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In this study the magnetic order of the spin-1/2 XXZ chain system Cs2CoCl4 in a temperature range from
50 mK to 0.5 K and in applied magnetic fields up to 3.5 T is investigated by high-resolution measurements of the
thermal expansion and the specific heat. Applying magnetic fields along a or c suppresses TN completely at about
2.1 T. In addition, we find an adjacent intermediate phase before the magnetization saturates close to 2.5 T. For
magnetic fields applied along b, a surprisingly rich phase diagram arises. Two additional transitions are observed
at critical fields μ0HSF1 � 0.25 T and μ0HSF2 � 0.7 T, which we propose to arise from a two-stage spin-flop
transition.
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I. INTRODUCTION

The magnetism of low-dimensional spin systems is of
fundamental interest due to its relation to many recent
problems of modern solid-state physics, e.g., high-temperature
superconductivity, the emergence of exotic ground states, or
quantum critical phenomena at low temperatures [1]. In this
context, one-dimensional systems are especially appealing
due to the enhanced quantum fluctuations. Some of the
applied theoretical models are even exactly solvable, e.g.,
the transverse-field Ising model that was successfully applied
to the famous compounds LiHoF4 [2] and CoNb2O6 [3],
which may serve as model magnets for field-induced quantum
criticality. Most studies of one-dimensional magnets focus on
the temperature range, in which the physics is governed by
the primary magnetic exchange. The emergence of long-range
magnetic order at low temperatures is not covered by the
applied one-dimensional models, which, e.g., based on the
Mermin-Wagner theorem do not show magnetic order at
any finite temperature. Nevertheless, magnetic order does
arise in corresponding model crystals due to finite interchain
couplings. Although these couplings might be comparably
small, their impact on the low-energy excitations in the vicinity
of quantum critical points can lead to interesting physics
like the emergence of a unique symmetry in the compound
CoNb2O6 [3].

An interesting class of models, where quantum critical
phenomena can be observed in thermodynamic properties,
are models with a planar anisotropy of the XXZ type, when
the rotational symmetry around the z axis is broken by
a magnetic field applied in the transverse direction, i.e.,
perpendicular to the anisotropy axis. At temperatures below
2 K, Cs2CoCl4 is an established realization of this type [6–9].
In this compound the magnetism arises from Co2+ ions that are
surrounded by distorted Cl4 tetrahedra and form chains along
the crystallographic b axis. Due to the induced strong crystal-
field anisotropy D the orbital S = 3/2 quartet is split into two
Kramers doublets that are separated by �E = 2D � 14 K.
Thus, at low temperatures T � �E, a description of the lower
| ± 1

2 〉 states in terms of an effective spin-1/2 model arises. The
primary magnetic exchange between CoCl4 tetrahedra is found

along b, while inter-chain interactions are estimated to be at
least one order of magnitude smaller [10,11].

The anisotropy D establishes an easy-plane anisotropy of
the Co2+ magnetism. Due to the presence of 21-screw axes in
the space group Pnma (D16

2h, No. 62) two equivalent types of
tetrahedral coordinations of the cobalt sites arise (cf. Fig. 1).
They give rise to two types of magnetic easy planes that
only differ by the sign of a rotation around b, that alternates
along c, but not along the chain direction b. This renders the
crystallographic b axis the only principal axis with respect to
the easy-plane orientation. Thus applying a magnetic field
along this axis leads to a description of a single chain in
Cs2CoCl4 in terms of the XXZ model in transverse magnetic
field
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Here, the spin component y is identified by the crystal-
lographic b axis, while z defines the local easy plane which
alternates from one chain to another. In a previous work [9],
we showed that this model is applicable to Cs2CoCl4 in a
temperature range from 0.25 K to 2 K and in magnetic fields
up to 3 T. The anisotropy � � 0.12 was determined from an
analysis of specific-heat and thermal-expansion data, which
furthermore show clear signatures of quantum criticality close
to 2 T.

Cs2CoCl4 is isostructural to the intensely studied compound
Cs2CuCl4, which shows diverse magnetic phases at low
temperatures [12–14]. Identifying the couplings of Cs2CoCl4
in analogy to Ref. [5] leads to a representation of the magnetic
lattice, which is identical to that of Cs2CuCl4 (right of Fig. 1).
It consists of anisotropic triangular layers within bc planes
that are stacked along a. In Cs2CuCl4 the exchange constants
Jbc and J within the triangular layers are of comparable
magnitudes [15]. In contrast, the interchain interactions of
Cs2CoCl4 were estimated to be at least one order of magnitude
smaller than the dominant intrachain interaction J [11,16].
Thus Cs2CoCl4 is close to the spin-chain limit and magnetic
order is observed at lower temperatures than in Cs2CuCl4.
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FIG. 1. (Color online) Crystal structure of Cs2CoCl4 (left) based
on Ref. [4], but with the unit cell shifted by (0,0.5,0.5) as in Ref. [5].
Checkerboard planes indicate the orientations of the magnetic easy
planes alternating between sites (1 and 3) and (2 and 4). The dominant
intrachain exchange J is along b via Co-Cl-Cl-Co paths (sketched in
red). Along c, the chains form buckled layers (gray) with frustrated
interchain couplings Jbc (green) between 1(2) and 4(3). Along the
stacking direction a, there are nonfrustrated interlayer couplings
Jac (blue) between 1(3) and 2(4) and also frustrated couplings Jab

(yellow) between 1(2) and 3(4), but the latter are only present
between every second pair of bc layers. On the right is a schematic
representation of the magnetic lattice with equivalently colored
couplings J , Jbc, Jac, but without Jab. The alternating easy-plane
orientations are represented by open and filled symbols.

Another important difference between both compounds arises
from the different electronic configurations of copper and
cobalt. In the case of Cu2+(3d9) the orbital momentum is
quenched by the crystal electric field, which leads to an almost
fully isotropic Heisenberg magnetism. In contrast, the orbital
momentum of Co2+(3d7) is finite and spin-orbit coupling may
cause strongly anisotropic magnetic properties. In general,
the type of anisotropy, XY versus Ising, depends on the
coordination and in Cs2CoCl4 magnetic easy planes emerge,
which are close to the pure XY limit [9]. As the leading
interchain couplings are between sites of different easy-plane
orientations (see Fig. 1), we suggest that different mechanisms
are relevant for the magnetic order than in Cs2CuCl4.

The antiferromagnetic order of Cs2CoCl4 at temperatures
T < TN � 220 mK was previously investigated by neutron
scattering [5]. At zero magnetic field the spins along each
chain order antiferromagnetically with collinear spins oriented
within the bc planes and tilted away from the b axis by
|φ| ≈ 15◦. The sign of φ is equal for neighboring chains that
are coupled via the nonfrustrated Jac, while the sign of φ

alternates between chains coupled via the frustrated coupling
Jbc. Thus the collinear spins of chains (1 and 2) are canted
with respect to those of chains (3 and 4) and all spins are

tilted away from their magnetic easy planes. Note that b is
the common axis of both types of easy-plane orientations
and an alternating orientation of the spins along ±b would
yield a collinear antiferromagnetic spin structure with all the
spins oriented within their respective magnetic easy planes.
The fact that this most simple Néel state is not realized
in Cs2CoCl4 reveals that additional couplings, e.g., between
further neighbors or antisymmetric Dzyaloshinskii-Moriya
(DM) exchange, have to be considered to understand the
complex magnetic structure of this material. This aspect as well
as the competition between an incommensurate spin-spiral
state favored by the frustrated interchain coupling Jbc and
the presence of alternating easy-plane orientations have been
raised already in Ref. [5], but have not been clarified until
now. Concerning the influence of a magnetic field, it has been
found that TN is fully suppressed around 2.1 T for H‖a, while
the magnetization saturates at slightly larger magnetic fields
μ0Hm � 2.5 T, which was supposed to indicate a spin-liquid
ground state in the intermediate field range [5]. Studies of the
magnetic order of Cs2CoCl4 for magnetic field directions other
than a are, however, not available. Of particular interest is the
influence of magnetic fields applied along b, as this direction
is common to both types of easy planes. Moreover, this field
direction is almost collinear to the ordered moments and is
thus expected to induce spin-flop transitions.

Extending our previous work on the one-dimensional
magnetism [9], in the present study, we strive for a description
of the thermodynamics and the magnetic phases of Cs2CoCl4
at low temperatures and in magnetic fields applied along
different axes. We discuss the phase diagrams at temperatures
T < TN obtained by measurements of specific heat and
thermal expansion in magnetic fields applied along different
crystallographic axes and discuss possible origins of the
observed phases.

II. EXPERIMENT

Single crystals of optical quality of Cs2CoCl4 were grown
from an aqueous solution with a stoichiometric ratio of 1 : 2
of the educts CoCl2·6H2O and CsCl by controlled evaporation
of the solvent at 311 K. During a growth period of 6–8 weeks
crystals of dimensions up to 20 × 20 × 15 mm3 with well
developed morphology were obtained. The morphological
faces of the crystals and x-ray diffraction were used to prepare
oriented samples of typical dimensions of 2×2×1 mm3. All
measurements were performed in a high-vacuum chamber of
a dilution refrigerator (Kelvinox 300, Oxford Instruments).

The heat capacity was obtained by the quasiadiabatic
heat-pulse method using a home-built calorimeter, which was
previously calibrated in applied magnetic fields. The sample
was fixed to the sample platform by a small amount of Apiezon
N grease. The addenda heat capacity was measured in a
separate run and subtracted.

At temperatures below 0.5 K the obtained raw data suffer
from an increasing internal relaxation time (τ2). As different
sample shapes as well as surface preparation did not signifi-
cantly influence the internal relaxation, we conclude that it
arises from a small thermal conductivity of Cs2CoCl4 at low
temperatures. In the process of thermal equilibration after
applying a heat pulse to the sample, parts of the sample pick

024423-2



LOW-TEMPERATURE ORDERED PHASES OF THE SPIN- . . . PHYSICAL REVIEW B 91, 024423 (2015)

up more heat than others. In the vicinity of phase transitions,
this may lead to heating only parts of the sample above
the transition temperature. Thus the subsequent temperature
relaxation is nontrivial. In few of our zero-field raw data,
this effect causes a steplike temperature relaxation, indicating
latent heat in parts of the crystal. These effects complicate
the exact determination of the heat capacity. A secondary
effect is the suppression of a temperature hysteresis of cp

due to the partial crossing of TN while applying a heat pulse.
Therefore, the absolute values of cp close to TN are not reliable.
In the low-field range (< 0.2 T) the transition temperature is
fixed by only a few data points. Although the peak shape
is therefore not fully resolvable, we interpret the appearance
of latent heat as an indication for the first-order character of
these transitions. In the analysis of the heat pulses, τ2 effects
were accounted for as described in Ref. [17]. Nevertheless, we
estimate the induced systematic error to be of the order of 10%.
However, none of our conclusions is tampered by this effect.
Especially the obtained transition temperatures and fields are
hardly influenced by the present τ2 effect.

Thermal expansion and magnetostriction were measured
on a home-built capacitance dilatometer made of copper.
The capacitance was measured with an ac capacitance bridge
(AH2550A, Andeen Hagerling). To ensure that the obtained
data are not influenced by magnetocaloric effects, sweeps
were performed at very slow magnetic-field rates down to
1 mT/min. All presented data were obtained in a longitudinal
configuration, meaning that the magnetic field was always
applied along the same axis i the relative length change �L

was measured for. The uniaxial thermal-expansion coefficient
αi and the magnetostriction coefficient λi were obtained
numerically, (αi,λi) = 1

Li

∂�Li

∂(T ,μ0H ) .

III. RESULTS

A. Magnetic field along a or c

The specific heat of Cs2CoCl4 in magnetic fields up to
2.6 T applied along a or c is shown in Fig. 2. In zero magnetic
field, the transition upon cooling from the paramagnetic to
the antiferromagnetic phase is reflected by a sharp anomaly at
TN = 220 ± 5 mK. Similar transition temperatures were found
in previous studies [5,6]. We observe a linear temperature
dependence of the molar specific heat cp/NAkB � 0.43 T for
TN < T < 0.5 K, as expected in the low-temperature limit
(T � J ) of the antiferromagnetic spin-chain model with an
easy-plane type anisotropy,

C

R
= A

kBT

J
, (2)

with the molar gas constant R = NAkB. The value of the
slope A = 2

3
arccos(�)√

1−�2 depends on the anisotropy � < 1 and
ranges from Axy = π/3 ≈ 1.05 in the case of the XY model
(� = 0) to AH = 2/3 for the Heisenberg model [18]. For the
case of � � 0.12 we obtain J/kB � 2.3 K from our data.
However, the limit of T � J is barely fulfilled. As known
from the related XY model (� = 0) the slope of cp increases
at finite temperature [19], resulting in an underestimate of J

in the present case. More extensive comparisons at elevated
temperatures have previously been performed [6,9], and yield
J/kB � 2.9 K.
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FIG. 2. (Color online) Specific heat of Cs2CoCl4 for representa-
tive magnetic fields applied along c (left) or a (right). Curves are
offset with respect to each other by 2, 2, 1, 4, and 10 J mol−1K−1 in
panels (a)–(e), respectively.

Within the magnetically ordered phase the temperature
dependence of the specific heat is well described by a power
law cp ∝ T α with α � 3.5. As the phonon heat capacity can
be neglected in the present temperature range, the power-law
dependence stems from the ordered magnetic subsystem. In
the simplest case of an ordered antiferromagnet, one expects
a temperature dependence of specific heat cp ∝ T d/n, where
d is the dimension of the system and n the leading exponent
of the magnetic dispersion relation ω(
k) ∝ kn. However, the
expected T 3 dependence of an antiferromagnet (d = 3, n = 1)
is not found in the experiment. The observed value of α = 3.5
is probably related to anisotropies γ with respect to the chain
direction y and the appearance of an anisotropy gap DA in the
magnon dispersion

ε(
k) =
√

[2JS( sin ky + γ (sin kx + sin kz))]2 + DA
2. (3)

From numerical calculation of the specific heat, we find that
depending on the parameters γ andDA a restricted temperature
range opens in which cp is well approximated by T α . We find
a quantitative agreement with our data below TN using the
parameters

J/kB = 2.9 K, γ = 0.05, DA/kB = 0.7 K. (4)

Here, J was fixed to the established high-temperature value
and the relative strength of the interchain coupling γ was
inferred from neutron data [11]. However, we suggest not
to stress the exact numerical results too much, as the model
allows for a rather broad range of parameters that lead to
similar descriptions of the data. Our comparison shows that the
experimentally observed power law is not universal, but might
be well explained by an anisotropic magnon dispersion, which
effectively generates an approximate power-law dependence
of cp ∝ T 3.5 in the restricted experimental temperature range.
These results ask for a detailed study by, e.g., electron spin
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resonance or inelastic neutron scattering to quantify the size
of DA.

Applying magnetic fields up to 1.0 T, the temperature
dependence of cp remains well described by the same power
law cp ∝ T 3.5. Besides, the magnetic-order peak is shifted to
higher temperatures with increasing magnetic field. In case
of H ‖ a, a maximum peak position TN � 330 mK is reached
in a magnetic field of 1.0 T. Magnetic fields applied along c
as well lead to an enhancement of the transition temperature
to � 300 mK at 1.0 T. Increasing the magnetic field further
(center panels of Fig. 2), the peak position shifts back to
lower temperatures. Almost no field dependence is observed,
however, in a small adjacent field range (2.0 T < μ0H ‖ a <

2.2 T). In fact, in the case of 2.1 T < μ0H ‖ c < 2.3 T even
a slight enhancement of TN can be resolved due to the higher
data quality of these measurements. Tuning the magnetic field
μ0H ‖ c to 2.15 T, the previous single peak even splits into
two distinct peaks. While the lower-temperature peak in terms
of shape and position seems to be related to the previous peak
at lower magnetic fields (1.5 to 2.1 T), the upper one resembles
the (single) peaks found at magnetic fields larger than 2.15 T.
Increasing the magnetic field further, both transitions are
suppressed to lower temperatures until above 2.5 T a gaplike
behavior of the specific heat arises.

The temperature dependence in the high-field range H ‖ a
is shown in Fig. 3 in more detail. With increasing field the
specific heat is suppressed, corresponding to the opening of
a gap by the magnetic field. At 3.0 T a phenomenological
description of the data is possible via a simple model of a
two-level system with an energy gap �E, yielding a Schottky
contribution

c�E
p (T )

R
=

(
�E

kBT

)2
e�E/kBT

(1 + e�E/kBT )2
. (5)

A fit (solid line in Fig. 3) of the specific heat c�E
p (T ) for the

maximum field of 3 T yields the field-induced gap �E/kB �
1.9 K. An additional low-temperature contribution is seen at
T � 0.3 K, which might stem from hyperfine interactions with
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FIG. 3. (Color online) Specific heat of Cs2CoCl4 in the gapped
phase in magnetic fields applied along a. The solid line represents a
fit of a Schottky contribution given by Eq. (5) and the dashed line is
a fit of a nuclear contribution via Eq. (6).
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FIG. 4. (Color online) Thermal expansion (left) and magne-
tostriction (right) of Cs2CoCl4 in magnetic fields applied along
a. For clarity, the �L/L curves in panels (a) and (b) are offset
with respect to each other by 4 × 10−6 and the corresponding
temperature and field derivatives α and λ in panels (c) and (d) are
offset by 2 × 10−6 K and 5 × 10−5 T, respectively. Bold (thin) lines
represent measurements with increasing (decreasing) temperature or
field (indicated by arrows) with rates of 3 mK/min or 5 mT/min,
respectively. In (c), only α(T ) obtained with increasing temperature
are shown.

the nuclear spin I = 7/2 of Co that lead to a specific heat
contribution of the form

cN
p (T )

R
= I + 1

3I

(μNμ0Heff)2

(kBT )2
, (6)

with the induced effective field Heff and the nuclear magneton
μN = e�/2mp. Fitting cN

p to the low-temperature data yields
an effective field μ0Heff � 64 T, which lies in the typical range
obtained for metals, but exceeds the value reported for pure
cobalt [20,21].

Figure 4 displays the thermal expansion and magnetostric-
tion �L/L ‖ a as a function of temperature and magnetic field.
In general, we observe a field dependence analogous to that of
the specific heat. With increasing temperature in zero magnetic
field, �L/L drops by approximately 2 × 10−6 at a temperature
of 240 mK, which is higher than the TN � 220 mK found in
specific heat. However, the transition is accompanied by a
strong temperature hysteresis, that is centered roughly around
the TN extracted from specific heat [marked by a dashed line
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decreasing the temperature (indicated by arrows) with different sweep
rates. Inset: dependence of the hysteresis width on the sweep rate.

in Fig. 4(a)]. Due to the experimental issues in the process
of recording the single data points of the specific heat that
were discussed above, hysteresis effects of cp are possibly
reduced in comparison to the thermal expansion data, which
are obtained continuously while slowly heating or cooling the
sample. In order to further investigate the character of the
antiferromagnetic transition, measurements were performed
at different sweep rates from 1 mK/min up to 50 mK/min
with �L/L measured along b (Fig. 5). The relative length
change sharpens by decreasing the sweep rate and resembles
a steplike anomaly as typically expected for a first-order
transition. However, the width of the associated temperature
hysteresis does not remain finite in the limit of vanishing sweep
rate. It can be described by a power-law dependence with an
exponent of 0.52, as fitted by the dashed line in the inset
of Fig. 5. Due to the strong thermal coupling of the sample
we exclude experimental origins for the hysteresis narrowing,
but ascribe it to the dynamics of domain walls at the phase
transition. The observed

√
�s dependence of the width of

the transition, where �s is the sweep rate, can be explained
by a simple model which assumes that (i) the transition is
of first order and (ii) that the dynamics of the transition is
dominated by the motion of domain walls (rather than by their
nucleation). The difference of the free energy densities, �f ,
of two phases is approximately linear in T − Tc for a first
order transition, �f ∝ T − Tc. In addition, �f can directly
be identified with the force per area on a domain wall as the
free energy �F = �f A�r is gained when a domain wall
with the area A moves by the distance �r . Assuming that the
velocity of the domain wall is proportional to the force and
using that T − Tc = ±�st for a sweep across the first-order
transition, one finds that �r ∝ �st

2. The phase transition is
completed at the time ts , when �r is of the order of the distance
of nucleation centers of domains and we find ts ∝ 1/

√
�s .

Therefore, the hysteresis width can be expected to be of the
order of �sts ∝ √

�s as observed. Together with the latent
heat observed in the specific heat raw data, we infer that the

transition is of first order and mainly driven by the motion of
domain walls.

Maintaining this hysteretic character, the transition shifts
to higher temperatures upon increasing the magnetic field to
1.5 T, indicated by sharp peaks of α centered around 320 mK.
Similar to the heat-capacity results it then is suppressed. In
contrast, no transition is observed at all in thermal expansion
for magnetic fields larger than 2.1 T, whereas clear anomalies
are present in heat capacity. The absence of features in α

signals a vanishing pressure dependence of the transition
temperature TC , which linearly enters the thermal expansion
[22], α ∝ ∂TC

∂p
. Thus the absence of peaks in α does not exclude

a phase transition, but only indicates that the corresponding
transition has a negligible pressure dependence.

At elevated temperatures (T > 250 mK), the magnetostric-
tion reveals two distinct anomalies as a function of the
magnetic field, which indicate transitions between the para-
magnetic and the ordered phases. Due to a maximum of
TN(B) close to 1 T, this phase boundary can be passed
twice as a function of the magnetic field. Both transitions
are accompanied by a sizable hysteresis that in the case of
the upper transition monotonically decreases upon cooling
and vanishes completely at the lowest measured temperature.
Besides the very pronounced anomaly close to Hc,1 = 2.1 T an
additional kink is seen in �L/L at Hc,2 = 2.4 T for the lowest
temperature of 71 mK, that is associated with a minimum in
λ (marked by dashed lines in 4). From 71 mK up to 157 mK
this minimum remains at almost the same magnetic field. No
hysteresis is observed at any of the measured temperatures for
this transition, which indicates a second-order phase transition
at Hc,2.

B. Magnetic field along b

As described above, a magnetic field along b is unique for
the actual crystal symmetry, because b is the only principal axis
that lies within both types of magnetic easy-plane orientations,
which differ by a rotation ±β around b (see Fig. 1). With
respect to the local coordinate system of the individual Co2+
ions, this field configuration is therefore sufficiently described
by a single component term ∝ HbS

y

i in the Hamiltonian (1).
Moreover, as the spins in the zero-field Néel phase are oriented
almost along b, one may expect spin-flop transitions for this
field direction.

As is shown in Fig. 6, the obtained specific-heat data for
H ‖ b significantly differ from those obtained in magnetic
fields applied along a or c. While TN is continuously enhanced
by small magnetic fields H ‖ a and H ‖ c, magnetic fields
H ‖ b instead cause an initial suppression of the transition
temperature. At 0.2 T a small additional anomaly appears
around 130 mK, which, however, is not seen at 0.25 T,
where only one single peak is observed again. Applying
magnetic fields above 0.4 T splits the single peak into two and
the upper peak moves continuously to higher temperatures
until it reaches a maximum value of 0.35 K at an applied
magnetic field of 1.5 T. In contrast, the lower peak shows
a nonmonotonic field dependence. Starting at 0.4 T, it first
is suppressed to a minimum temperature of about 117 mK
at 0.75 T. Then, the peak position is shifted towards higher
temperatures again and reaches a maximum of around 200 mK
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magnetic fields H ‖ b. For clarity, the curves are offset with respect
to each other by 1 J mol−1K−1 in panel (a) and by 2 J mol−1K−1

in panels (b) and (c). The arrows in (b) indicate two distinct phase
transitions, which are present in a field range from 0.5 to 1.8 T.

at a magnetic field of 1.5 T. Further increasing the magnetic
field to 1.8 T rapidly shifts the lower transition to lower
temperatures until it is finally no longer observable within the
experimental temperature range in a magnetic field of 1.9 T.
The position of the upper peak is weakly field dependent in
the field range between 1.5 T and 2.0 T, but then also is shifted
towards T → 0 in magnetic fields above 2.2 T. In magnetic
fields above 2.8 T an overall suppression and a gaplike behavior
of the specific heat indicates the opening of a gap by the
magnetic field as expected for full spin polarization.

A similarly rich magnetic-field dependence arises in the
measurements of the thermal expansion and the magnetostric-
tion (Fig. 7). In zero magnetic field, the relative length change
�L(T )/L reveals a steplike anomaly close to TN, that is shifted
to lower temperatures by increasing the magnetic field and, as
already discussed above, this transition is accompanied by a
hysteresis depending on the temperature sweep rate. In the field
range from 0.5 T to 1.3 T, the thermal expansion �L/L ‖ b
does not show comparably sharp anomalies as are seen in
the specific heat. In magnetic fields above 1.5 T, a kink of
�L/L reappears close to 0.2 K that is shifted towards lower
temperatures by increasing the magnetic field. Moreover, at
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FIG. 7. (Color online) Thermal expansion (left) and magne-
tostriction (right) of Cs2CoCl4 in magnetic fields along b. The relative
length changes �L/L are displayed in (a) and (c), while (b) and (d)
show the corresponding temperature and field derivatives. In (a) the
�L(T )/L curves for different magnetic fields are shifted according
to the measured magnetostriction �L(H )/L at T = 50 mK shown in
(c). For clarity, the other curves in (c) are offset with respect to each
other by 10−5 and the α(T ) curves in (b) by 5 × 10−5 K. In all panels,
only data obtained with increasing temperature or field are shown.

1.9 T another anomaly appears around 0.3 K, which then
also shifts towards lower temperature when the field is further
increased and finally vanishes around 2.3 T. Clearer evidence
of magnetic phase transitions are seen in the magnetostriction
data. Here, a saturation of �L/L sets in at magnetic fields
μ0H > 2.3 T, similar to the magnetization, which for H ‖ a
is known to be saturated in this field range as well [5]. At the
lowest temperature of 50 mK, two pronounced anomalies are
present at 0.26 T and 1.9 T, which are reflected by sharp peaks
of λ; see Fig. 7(d). Moreover, additional smaller anomalies
occur at 0.22, 0.43, and 0.67 T, which can be no longer resolved
when the temperature is increased to 200 mK. Concerning
the larger anomalies, the upper two are strongly broadened at
200 mK, but still can be seen as maxima in λ, while the lower
one is only weakly broadened and shifted to 0.18 T. At 400 mK,
λ(H ) displays only one broad maximum around 2 T, which
signals the one-dimensional magnetism in the paramagnetic
phase. No signatures of sizable field-induced hysteresis are
found at any temperature in the magnetostriction data.
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C. Phase diagrams

All phase transitions observed by the specific-heat and
thermal-expansion measurements are plotted in Fig. 8 in field
versus temperature phase diagrams for the three principal
magnetic-field directions discussed before. The data points of
different methods agree within the bounds of hysteresis effects.
In general, the phase diagrams are very similar for magnetic
fields H ‖ a and c. A slight rescaling of the field axis from
a to c is probably induced by a small g-tensor anisotropy.
We find an initial increase of the zero-field Néel temperature
TN � 220 mK by small magnetic fields up to 1.5 T and a
subsequent suppression of TN → 0, which is accompanied
by a decreasing hysteresis. Combining the phase transitions
observed by different experimental methods, the presence of a
previously unknown and well defined low-temperature phase
adjacent to the antiferromagnetic phase becomes obvious,
which is referred to as “phase II” in the following. The entry of
phase II is accompanied by a steep increase of the heat capacity
as a function of the magnetic field in between the critical fields
μ0Hc,1 � 2.1 T and μ0Hc,2 � 2.4 T (right scale of Fig. 8). In
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FIG. 8. (Color online) Low-temperature H − T phase diagrams
of Cs2CoCl4 for magnetic fields along all three crystallographic axes.
Shaded areas are guides to the eye. The magnetic-field dependent
specific heat cp at a constant temperature of 0.11 K is also displayed
(red lines, right scales). For H‖b, the occurrence of two spin-flop
phases, SF1 and SF2, is indicated by cp(H ) and for all three field
directions cp(H ) is strongly enhanced in the field range of phase II.

previous studies by neutron diffraction [5] a coinciding critical
field Hc,1 is found bordering the antiferromagnetically ordered
state from a state that due to the lack of antiferromagnetic order
reflections has been argued to be a spin-liquid state. In the case
of a spin-liquid ground state one would expect a continuous
temperature evolution of thermodynamic properties with no
signs of magnetic ordering down to zero temperature. Our
data, however, give clear evidence of temperature-dependent
ordering transitions in the magnetic field range Hc,1 < H <

Hc,2. Thus our thermodynamic data suggest the occurrence of
another type of order in this field range instead of a disordered
spin-liquid ground state in Cs2CoCl4.

Applying magnetic fields along b leads to a more complex
phase diagram. Here, the formerly discussed phase II similarily
arises as a function of magnetic field at lowest temperatures. At
elevated temperatures phase II, however, extends over a wide
field range and even merges with the antiferromagnetic and the
spin-flop phases (discussed later) at small magnetic fields in a
triple point. The extension of phase II explains the appearance
of two distinct transitions as a function of temperature in the
field range from 0.5 to 1.8 T as observed in the specific heat
data. The enhanced specific heat in the field range of phase II as
well as the power-law scaling cp ∝ T α are almost identical for
all three field directions. The exponents α obtained by fitting
the temperature dependences of cp within phase II agree within
a few percent (see Table I). Thus we conclude that phase II is
present irrespective of the magnetic field direction, but is most
favored by a magnetic field applied along b.

While phase II arises for all three magnetic field directions,
the low-field phases differ in the case of H ‖ b. As described
above [5], the spins in the zero-field Néel phase are tilted
away from b by φ ≈ ±15◦. Neglecting these tilts makes the
configurations H ‖ a and H ‖ c symmetry equivalent. As in
both cases the magnetic field points almost perpendicular to
the ordered moments, it causes a canting of the spins towards
the field direction, and the corresponding phases are denoted
as canted antiferromagnet (CAF). Magnetic fields H ‖ b, in
contrast, have a large component collinear to the ordered
moments and typically induce spin-flop transitions. In fact,
our data indicate a field-induced transition at a small magnetic
field μ0HSF1 � 0.25 T ‖ b that is indicated by a rise of cp

by a factor of about 5 and a peak in the magnetostriction
coefficient λ. For H < HSF1, we find the same temperature
dependence cp ∝ T 3.5 as for the other magnetic field directions
up to about 0.5 T, but above HSF1 the exponent α is reduced to
3.0 and remains constant up to μ0HSF2 � 0.7 T, above which
cp is strongly reduced again and is no longer described by

TABLE I. Power-law exponents α of the specific heat cp ∝ T α

within the various magnetic phases for different magnetic field
directions. The phases SF1 and SF2 only occur for H ‖ b.

α

Phase H ||a H ||b H ||c
AF (<0.25 T) 3.5 3.5 3.5
SF1 (0.25–0.7 T) 3.02
SF2 (0.7–2 T) Complex
II (≈2–2.4 T) 2.68(15) 2.63(4) 2.69(7)
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of the specific heat of the various low-temperature phases of
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phase at the given magnetic field applied along b. Dashed lines are
fits of cp(T )/R = A · T α .

a simple power; see Figs. 8, 9, and Table I. Both transition
fields, HSF1 and HSF2, are also seen in the magnetostriction
data at the lowest temperature of 50 mK as peaks in λ(H ); see
Fig. 7(d). Interestingly, the magnetostriction data even indicate
additional transitions slightly below HSF1 and HSF2, but be-
cause these anomalies weaken above 100 mK, it is not clear, at
present, whether they might be related to some domain effects.

We speculate that the two transitions at HSF1 and HSF2

signal a two-stage spin-flop transition, which may arise from
DM interactions between spins of neighboring chains. In
Cs2CoCl4, the symmetry of the corresponding Co-Cl-Cl-Co
bonds is indeed low enough to allow for interchain DM inter-
actions, which favor a perpendicular alignment of the spins of
neighboring chains. Thus, for H‖b, a spin configuration with
a spin-flop state in every second chain, see Fig. 10, may be
stabilized by the energy gain due to interchain DM interactions
in the intermediate field range HSF1 < H < HSF2, until above
HSF2 the fully spin-flopped state evolves. Such two-stage spin-
flop transitions were previously observed, e.g., in BaCu2Si2O7

[23].

AF SF2 II saturatedSF1

H0 SF1 HSF2 H

?

c,1

H  b

Hc,2

FIG. 10. (Color online) Sketch of the proposed sequence of
field-induced phases in Cs2CoCl4 for H ‖ b. The different colors
of neighboring spin chains represent their different easy-plane
orientations. AF: all spins are nearly (anti)parallel to the field H and to
each other. SF1: every second chain transforms to a spin-flop phase,
which is stabilized by Dzyaloshinskii-Moriya interactions between
spins of neighboring chains. SF2: spin-flop phase in all chains. Phase
II could be an incommensurate or nematic phase preceding the fully
saturated phase.

IV. SUMMARY AND CONCLUSIONS

Our measurements of the specific heat and thermal expan-
sion of Cs2CoCl4 reveal a rich low-temperature phase diagram.
Depending on the direction of the magnetic field, up to four
differently ordered phases arise until above about 2.4 T the
fully saturated state with a finite spin gap is reached. For H‖a
or c, i.e., for magnetic fields applied (almost) perpendicular to
the spin orientations in the zero-field Néel state, the expected
canted antiferromagnetic state is present only up to about
2 T, while in the adjacent field range Hc1 < H < Hc2 another
low-temperature phase II occurs. Such a phase II also occurs
for H‖b, for magnetic fields applied (almost) parallel to the
spin orientations in the zero-field Néel state, and for this
longitudinal field direction the phase II even extends over a
much larger field and temperature range. In addition, our data
identify two other low-temperature phases SF1 and SF2, which
probably result from a two-stage spin-flop transition due to
finite interchain DM interactions.

A main open question concerns the nature of the phase II.
In the following, we would like to discuss three options: (i) a
spin-liquid phase [5], (ii) an incommensurate phase similar to
the one observed in Cs2CuCl4 [14,24], and (iii) a more exotic
nematic phase.

Based on neutron scattering data for H‖a, which did
not find any signature of magnetic order in the (b,c) plane,
Kenzelmann et al. suggested that phase II is a spin-liquid state
[5], which one would expect to continuously evolve from the
high-temperature disordered state. Our data, in contrast, reveal
clear anomalies as a function of temperature associated with
a thermodynamic phase transition. While for some spin-liquid
states finite-temperature phase transitions of emergent gauge
degrees of freedom are possible, see, e.g., Ref. [25], a more
likely scenario is the existence of an unidentified ordered phase
with broken symmetry.

As shown by an extensive analysis for the compound
Cs2CuCl4 in Ref. [14], the natural candidate for a high-field
phase is an incommensurate magnetic state. Cs2CuCl4 and
Cs2CoCl4 have the same orthorhombic crystal structure with
space group Pnma with the same type of magnetic frustration.
The important difference of both magnetic systems arises,
however, from the fact that the Cu2+ ions represent almost
isotropic Heisenberg spins, while the actual Co2+ ions result
in an effective XY-like spin-1/2 system with magnetic easy
planes whose orientations alternate from chain to chain; see
Fig. 1. Nevertheless, due to the identical symmetry one can
directly follow the symmetry-based arguments of Ref. [14]
concerning the magnon spectrum for high magnetic fields.
An unavoidable consequence of the frustrated interchain
coupling Jbc is to shift the minima of the gapped magnon
excitations at large magnetic field from momentum π to
incommensurate values. While frustrated coupling does not
benefit from antiferromagnetic ordering, it does benefit from
ordering at incommensurate momentum, i.e., if neighboring
spins along the chains tilt by an angle different from π .
Thus phase II, which for any field direction emerges in our
phase diagrams upon reducing the magnetic field from the
fully saturated phase at sufficiently low temperature, may
be thought of as a condensate of magnons at incommen-
surate momentum. Furthermore, DM interactions also favor
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incommensurate order [14] at high fields. At lower fields, in
contrast, incommensurate order is suppressed by the effective
Ising anisotropy arising from the coupling of spins with tilted
easy planes, as has been already pointed out in Ref. [5].
The theoretical analysis of Ref. [14] (including the effects of
DM interactions) and the experiments on Cs2CuCl4 [24] both
suggest that the incommensurate ordering vector in Cs2CoCl4
is oriented along the b direction as well, in apparent conflict
with the neutron scattering results [5] which did not find any
ordering signal in phase II within the (b,c) plane. Therefore,
either the incommensurate ordering vector is tilted out of the
(b,c) plane by a mechanism not yet identified or another phase
intervenes.

The absence of incommensurate order in this field range
could give rise to a more exotic explanation of phase II, in terms
of a nematic phase by a mechanism which was previously
suggested to explain the nematic state in the pnictides; see
Ref. [26]. The argument builds on the frustration inherent
to the crystal structure. By symmetry, the (commensurate)
magnetization in the chains of type (1 and 2), denoted by MA,
and the magnetization in the chains of type (3 and 4), denoted
by MB , is frustrated and thus in the free energy a coupling
term MAMB is forbidden by symmetry. Only a term of the
form (MAMB)2 is allowed by symmetry. Nematic ordering lifts
this frustration: while 〈MA〉 = 〈MB〉 = 0, the nematic state
is characterized by 〈MAMB〉 = 0 and therefore induces with
the help of the (MAMB)2 term a linear coupling of the two
subsystems. As has been shown for the pnictides [26], such
a nematic transition is triggered when the correlation length
in the unfrustrated subsystems is sufficiently long. Within this
scenario a nematic phase would intervene in all cases where
the transition to the low-temperature, low-field phase is of
second order. This is consistent with our observations: all direct

transitions from the paramagnetic to the AF (or CAF) phase
appear to be of first order.

Previous studies [9] of the thermodynamics of Cs2CoCl4
in the temperature and field range where the magnetism is
governed by only one dominant exchange coupling revealed
signatures of quantum criticality that scale linearly as a
function of magnetic field and extrapolate to a quantum critical
field Hc,XXZ � 2.0 T. This value is indicated by an arrow
in Fig. 8. It does not coincide with one of the extrapolated
low-temperature phase boundaries, but rather is located within
phase II. Irrespective of the microscopic origin, the formation
of an extra phase as a consequence of competing energy
scales is a well established phenomenon known for example
from different families of unconventional superconductors. In
analogy to the strong magnetic fluctuations present in those
compounds, in Cs2CoCl4 strong quantum fluctuations are in-
duced by the applied magnetic field which has noncommuting
components for all spatial directions of the field due to the
particular orientations of the magnetic easy planes.

With regard to future work, a deeper understanding of the
precise nature of phase II in our phase diagram is probably
most desirable. A simple scenario involving ordering at
incommensurate momentum was not found by Kenzelmann
et al. [5] in neutron scattering. This opens the possibility
of a more exotic nematic phase with correlated fluctuations
between its frustratedly coupled subsystems, which asks for
an extended analysis by microscopic methods.
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