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Antiferromagnetic ordering does not give rise to a measurable macroscopic symmetry-breaking order parameter
such as the magnetization in a ferromagnet. An exception is the case of antiferromagnets with a vortexlike toroidal
alignment of the magnetic moments in the unit cell because this gives rise to the formation of a spontaneous
macroscopic toroidal moment which can be measured as a magnetoelectric effect. It is a long-standing question
whether the toroidal moment is merely a side effect of the antiferromagnetic state or whether it can become the
primary order parameter in a ferroic phase transition. Here we report the magnetoelectric properties of LiFeSi2O6

and show that they point to the role of the toroidal vector moment as the primary order parameter. Based on
Landau theory we distinguish it from primary antiferromagnetic order. We thus justify the proposal that along
with ferromagnets, ferroelectrics, and ferroelastics the ferrotoroidics constitute a new class of primary ferroics.
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I. INTRODUCTION: TOROIDAL MOMENTS IN THE
SOLID STATE

The existence of a ferroic state with a macroscopic sponta-
neous order parameter changing its sign under the application
of space or time inversion has been the subject of many recent
studies [1–5]. Such a state is formed by a periodic lattice
of uniformly oriented toroidal moments T ∝ ∑N

i=1 ri × si as
illustrated in Fig. 1(b). Here r and s are the positions and spins
of the N magnetic moments in a unit cell. The existence of
toroidal moments is rooted in the toroidal part of the second
order in the multipole expansion of the electromagnetic vector
potential [6].

Thus far, toroidal moments have only been identified
in antiferromagnetic structures. It therefore remains to be
clarified if it is the toroidal moment or the antiferromagnetic
coupling between the spins that drives the phase transition into
the spin-ordered state. Only if the toroidal moment can act as
the primary order parameter, and not merely as a side effect
of antiferromagnetism, would “ferrotoroidicity” complement
ferromagnetism, ferroelectricity, and ferroelasticity as a new,
fully equivalent fourth form of primary ferroic order.

Symmetry considerations alone are insufficient for con-
cluding whether the toroidal moment can be the driving
mechanism for the transition to an antiferromagnetic state,
since it has the same symmetry as the microscopic antifer-
romagnetic spin-wave order parameter. It is thus important
to go beyond symmetry and find physical properties that
allow one to distinguish the effects exerted by a primary
toroidal order parameter from those exerted by a primary
antiferromagnetic order parameter. An obvious choice is the
magnetoelectric effect which was used previously to couple to
the spontaneous toroidal moment of a compound and orient it
in a controlled, hysteretic way [5]. The linear magnetoelectric
effect denotes induction of a magnetization by an electric field
(Mk ∝ αikEi) or of an electric polarization by a magnetic field
(Pi ∝ αikHk). Spontaneous toroidal moments are found in
antiferromagnetic structures displaying an antisymmetric part,
i.e., α

asym
ik = −α

asym
ki , of the linear magnetoelectric effect [7].

Here we show that the magnetoelectric properties disclosed
in the pyroxene compound LiFeSi2O6 [8–12] can be associated
with a primary ferrotoroidic order parameter. We measure all
the components αik of the magnetoelectric tensor and discuss
the magnetic symmetry derived from it. Based on Landau
theory we show that primary ferrotoroidic order can explain the
resulting symmetry whereas primary antiferromagnetic order
cannot.

The toroidal moment T is a macroscopic polar vector
antisymmetric under time reversal [1–7]. Therefore, candidate
compounds for ferrotoroidic order have to fulfill the necessary
conditions that the transition wave vector is at the center of the
paramagnetic Brillouin zone (q = 0), and that the magnetic
symmetry of the antiferromagnetic state violates space- and
time-inversion symmetry and permits toroidal components
[7]. These conditions are realized by the low-temperature
magnetic transition occurring in LiFeSi2O6 [10–12]. The space
group C2/c1′ of the crystal at room temperature transforms to
P 21/c1′ at a structural transition at 230 K [10]. At 23.2 K
the monoclinic unit cell with lattice dimensions a = 9.651 Å,
b = 8.7057 Å, c = 5.2790 Å, and β = 109.929◦ contains four
Fe3+ ions, the positions of which are given in Figs. 1(a)
and 1(b). Neutron diffraction [10–12] shows a transition to
a unit-cell preserving (q = 0) antiferromagnetic state at the
Néel temperature TN = 18 K. The magnetic phase is identified
as having a monoclinic magnetic space group P 21/c

′ which
allows a linear magnetoelectric effect [8]. Note that all our
measurements and their discussion are based on a Cartesian
reference system with unit axes ex , ey , and ez, where ey and
ez are running parallel to the crystallographic b and c axis,
respectively, and ex = ey × ez. The transformation matrix
between the crystallographic system {a,b,c} and the Cartesian
system {ex,ey,ez} is given by

r = Aa + Bb + Cc (1)

= Aa sin β ex + Bb ey + (Aa cos β + Cc) ez (2)

with β = ∠(a,c) �= 90◦. As we see, b ‖ ey denotes the twofold
symmetry axis and the ac mirror plane transforms into
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FIG. 1. (Color online) Primary ferrotoroidic order in LiFeSi2O6.
(a) View of the magnetic unit cell with edge-sharing chains of Fe3+O6

octahedra (brown), SiO4 tetrahedra (blue), and Li ions (green). Gray
arrows depict the Fe3+ magnetic moments [11,12]. (b) Magnetic
order within the ac, respectively xz, plane with spins si (i = 1 . . . 4).
Spins on sites 1 and 3, respectively 2 and 4, are antiparallel, while
the in-chain pairs (1-4, 2-3) are mainly coupled ferromagnetically.
Due to the vortexlike arrangement a toroidal moment T emerges
along the b ‖ ey direction (blue circle). (c) Depiction of the spin
sums contributing to the antiferromagnetic exchange interaction. We
have L1 = s1 − s2 − s3 + s4 and L3 = s1 + s2 − s3 − s4. The leading
exchange contribution is given by a term ∝(L1 · L3)2 which is
suppressed because of the approximate relation L1 ⊥ L3.

the xz mirror plane. In Cartesian coordinates, the nonzero
components of the linear magnetoelectric tensor in the P 21/c

′
phase are [13] αxx , αyy , αzz, αxz, and αzx .

II. LINEAR MAGNETOELECTRIC EFFECT

Figure 2 shows the temperature dependence of the lin-
ear magnetoelectric effect in LiFeSi2O6. It was measured
as magnetic-field-induced electric polarization for all nine
components αik . Because of the large difference between the
components we took particular care to minimize errors such
as sample misalignments with respect to the applied magnetic
fields or a possible mismatch of the sample electrodes, which
could easily admix intensity from large onto small or zero
components of the tensor [αik]. The sample misalignment
with respect to the applied magnetic fields was minimized
to about 1 ◦. In order to assure well-matched electrode areas
the sample surfaces were completely vapor metallized with
silver electrodes. Furthermore, the influence of nonidentical
electrodes on the pyroelectric current measurements was
systematically investigated (for more details see Ref. [14]).

In almost all cases the magnetoelectric domains in si-
multaneously applied magnetic and electric fields could be
completely inverted by inverting either the magnetic or the
electric field. Either reversal leads to a sign change of the
corresponding magnetoelectric tensor components. We find
that all components except αyy are different from zero, which
is an unexpected result. Several components not permitted
in the previously established magnetic space group P 21/c

′
are observed, which points to a lower, triclinic, symmetry. In
contrast, the zero-ness of αyy is not required by symmetry.
For a magnetic field applied along ey no magnetic-field-
induced pyroelectric current along ey could be resolved from

the background noise of about ±20 fA. As an additional
irregularity, a sharp drop in the temperature dependence of
Py for H || ez [Fig. 2(f)] occurring near 8 K for μ0H > 10 T
points to an additional symmetry-changing magnetic phase
transition.

III. OPTICAL BIREFRINGENCE

In order to verify the triclinicity of the magnetic phase
in the absence of an applied magnetic field the linear optical
properties were measured by polarization microscopy between
room temperature and 4 K. We did this by investigating
the orientational dispersion of the optical indicatrix [15].
For monoclinic crystals, its dispersion is restricted to pure
rotations around the ey axis by the symmetries 2 ‖ ey and
m ⊥ ey whereas there is no such restriction for lower (triclinic)
symmetries. For our investigation we used two polished crystal
plates, one with faces perpendicular to ex with a thickness of
86 μm and one with its faces perpendicular to the ez axis and
a thickness of 303 μm. On the former we detected a rotation
of the principal axes of the indicatrix out of the xz plane below
TN . This was done by measuring the inclination angle θ of
extinction between crossed polarizers with respect to the ey

axis in orthoscopic observation. As required in the monoclinic
phase, θ remained at 0 ◦ above TN . Below TN , however, it
augmented to a value of ≈2◦ at 4 K as shown in Fig. 3.

In an additional test we verified the orientational dispersion
of the optical axes. In optically biaxial LiFeSi2O6 the two
optical axes lie in the xz plane. One of them is seen with
the ez-cut sample in conoscopic observation. The orientational
dispersion of this optical axis within the xz plane above TN

changes to an out-of-plane orientational dispersion below TN ,
which is symmetry forbidden in monoclinic crystals. The
rotation of the optical axis plane of the indicatrix out of the
xz plane of the crystal is another confirmation that in contrast
to the previously proposed monoclinic symmetry [9,12] the
magnetic phase of LiFeSi2O6 below TN is actually triclinic.

IV. SYMMETRY ANALYSIS

The paramagnetic space group P 21/c1′ at q = 0 yields
the four monoclinic magnetic space groups P 21/c (�+

1 ),
P 2′

1/c
′ (�+

2 ), P 21/c
′ (�−

1 ), and P 2′
1/c (�−

2 ), here with
the corresponding one-dimensional irreducible representations
given in brackets (see Table I) [16]. Their subsequent activation
can induce a variety of magnetic phases as depicted in Fig. 4.
The transition of LiFeSi2O6 to the triclinic phase, as concluded
from the magnetoelectric and the birefringence measurements,
requires the simultaneous condensation of more than one
irreducible order parameter. According to Fig. 4, only the
group P 1̄′ induced by �−

1 + �−
2 can explain the observed linear

magnetoelectric effect in LiFeSi2O6.

A. Analysis in terms of magnetic spin modes

The correspondence between the symmetry of the magnetic
irreducible representation and sums of the local moments can
be found as follows. We construct a reducible representation
from the permutation of the magnetic moments on the
local sites by application of the symmetry operations of
the crystallographic P 21/c1′ parent group. This leads to a
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FIG. 2. (Color online) Linear magnetoelectric effect in LiFeSi2O6. (a)–(i) Temperature dependence of the electric polarization P x , P y , P z

(top to bottom) for magnetic fields μ0H applied parallel to the ex , ey , or ez axis (left to right). (j) Relative magnitude (proportional to circle
area) of the magnetoelectric polarization at 14 K and 3 T. �−

1 - and �−
2 -related contributions are bright and dark gray, respectively.

12-dimensional representation, as summarized in Table II, and
four possible sums of the magnetic moments on the iron sites,
namely,

M = s1 + s2 + s3 + s4, (3)

L1 = s1 − s2 − s3 + s4, (4)

L2 = s1 − s2 + s3 − s4, (5)

L3 = s1 + s2 − s3 − s4, (6)

where the spin-density vectors in Eqs. (3)–(6) represent
the four magnetic order parameters. By comparison of the
transformation of the magnetic moments on the different sites
(or using group-theoretical projection methods [17]) these
sums of spins can be associated with the transformation
behavior of the magnetic irreducible representations �±

i , as
listed in the last column of Table I. We thus see that �−

1 and �−
2

are spanned, respectively, by the spin-density-wave projections
(Lx

1,L
y

3,L
z
1) and (Lx

3,L
y

1,L
z
3). In turn, the microscopic modes

transforming like the irreducible representations �+
1 and �+

2
are inactive. The associated zero-ness of the modes M and

L2 yields six relations between the spins in the magnetic unit
cell, which are s1 = −s3 and s2 = −s4 in correspondence with
the spin structure shown in Fig. 1(b). Those moments on sites
related by the spatial inversion operation are strictly coupled
antiferromagnetically, and the discussion of the magnetic
structure can be simplified by considering only the Fe3+

moments within the edge-sharing chains along the c direction.
Note that the P 21/c

′ symmetry proposed in earlier inves-
tigations of LiFeSi2O6 corresponds to the presence of the �−

1
mode only. In this case the in-chain moments (s1 and s4, and
s2 and s3, respectively) are coupled ferromagnetically along
the x and z direction, and antiferromagnetically along the y

direction so that s
x,z
4 = s

x,z
1 and s

y

4 = −s
y

1 . With the additional
�−

2 mode leading to the triclinic P 1̄′ symmetry, the magnetic
moments s

x,z
1,4 are no longer exactly parallel and in addition the

in-chain moment along y has a ferromagnetic contribution.

B. Analysis in terms of toroidal moment

As an alternative to an association to spin waves, symmetry
permits one to express the order parameters in terms of
the components of a macroscopic toroidal vector T. Then,
�−

1 and �−
2 have the symmetry of the components T y and
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P. TOLÉDANO et al. PHYSICAL REVIEW B 92, 094431 (2015)

2||ey

m ey

2

1

0

0 10 20 30 40
Temperature (K)

(d
eg

re
es

)

FIG. 3. (Color online) Measured inclination angle of the extinc-
tion angle θ relative to the ey axis of a LiFeSi2O6 (100) plate,
using an incident wave with wave normal along ex . A polarizing
microscope with crossed polarizers was used for the observation.
Above TN = 18 K, we get θ = 0◦ in accordance with monoclinic
symmetry. Below TN the rotational degree of freedom expressed by
θ �= 0◦ indicates the loss of the monoclinic symmetry elements 2 ‖ ey ,
m ⊥ ey and, hence, a triclinic symmetry of the crystal. The line is a
guide to the eye.

T x,z of T, respectively. Here, T corresponds to the toroidal
moment defined by T = 1

2V
�ri × si , with unit-cell volume V ,

ionic displacements �ri , and magnetic moments si [2]. The
displacements �ri are calculated with respect to the room-
temperature phase with symmetry C2/c1′. For the magnetic
structure in LiFeSi2O6 this formula yields

T = 1

V

⎛
⎜⎝

�ry
(
sz

1 − sz
4

) − �rz
(
s
y

1 + s
y

4

)

�rz
(
sx

1 + sx
4

) − �rx
(
sz

1 + sz
4

)

�rx
(
s
y

1 + s
y

4

) − �ry
(
sx

1 − sx
4

)

⎞
⎟⎠. (7)

Symmetry considerations alone do not allow us to discriminate
which of the two order parameters, antiferromagnetic Li

or toroidal T, represents the primary symmetry-breaking
transition mechanism in LiFeSi2O6. Regarding their physical
origin, however, the interactions giving rise to the toroidal

TABLE I. Magnetic irreducible representations of the monoclinic
space group P 21/c1′ at the center of the Brillouin zone (q = 0).
1′ denotes the time-reversal operator. The physical basis functions,
given in the last column, transform according to the respective
representations. Here, H and T denote the macroscopic magnetic
field and the toroidal moment, respectively. M and L1,2,3 correspond
to microscopic spin-density waves defined in Eqs. (3)–(6).
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y

2

�−
1 1 1 −1 −1 −1 T y L
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FIG. 4. (Color online) Possible magnetic space groups obtained
from the P 21/c1′ parent group by activation of irreducible represen-
tations �i defined in Table I. A single active representation can induce
the phases highlighted by blue circles. The magnetic space groups
in rectangles are acquired if two representations are nonzero. The
only phase in agreement with the observed magnetoelectric effect in
LiFeSi2O6 is the space group P 1̄′ (orange square). It requires both
�−

1 and �−
2 to be active.

moment and to the spin-density waves are different. In
particular, the macroscopic toroidal moment results from a
variety of contributions, i.e., T = Tspin + Torb + Tother. Here
Tspin represents the contribution of localized spins as in
Fig. 1(b) forming the spin-density waves involved in the
formation of toroidal moments. Torb is the contribution of
the orbital moments of the electron current density to the
toroidal moment, which is several orders of magnitude smaller
than the spin contribution [18]. Tother are other possible
contributions to the toroidal moment as, for example, higher-
order toroidal moments in the multipole expansion of the
electromagnetic vector potential. Therefore, although both the
spin wave and the toroidal order parameter contribute to the
internal magnetic field and to the resulting magnetoelectric
effect, they can result from different interactions. The specific
features of these effects should allow us to determine the
actual symmetry-breaking order parameter that is the primary
driving force behind the transition into the triclinic magnetic
ground state below TN . In the following, we will show that a
primary antiferromagnetic spin-density-wave order parameter
is unlikely whereas the toroidal moment as the primary order
parameter yields a consistent description of the transition in
LiFeSi2O6.

V. PHASE TRANSITION MECHANISMS

The coefficients of the magnetoelectric tensor in Fig. 2 were
measured by recording the electric polarization current in-
duced at different values of the magnetic field. For the triclinic
symmetry P1̄′ all nine components of the magnetoelectric
tensor can be nonzero. We note, however, that the magne-
toelectric coefficients αik associated to the representations �−

1
and �−

2 differ substantially in magnitude according to Fig. 2(j).
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TABLE II. Reducible representation for determination of magnetic modes of the Fe3+ moments. The ions occupy sites with the positions
1 – (x,y,z), 2 – (1 − x,y + 1

2 , 1
2 − z), 3 – (1 − x,1 − y,1 − z), and 4 – (x, 1

2 − y,z + 1
2 ) (see Fig. 1). Matrices in the first row give the permutation

of these sites with the space-group symmetry elements; the second row lists the transformation behavior of the local spins s1,2,3,4 under the
symmetry operations.
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For the coefficients coinciding with a P 21/c
′ (�−

1 ) symmetry
(i.e., αxx , αyy , αzz, αxz, αzx) and the toroidal component
T y one has P x(Hx) = 1.30, P z(Hx) = 1.51, P x(Hz) = 7.58,
P z(Hz) = 11.53 in units of μ Cm−2 at 14 K and μ0H = 3 T.
In contrast, the coefficients associated with a P 2′

1/c (�−
2 )

symmetry (i.e., αyx , αzy , αxy , αyz) and the toroidal components
T x,z yield P y(Hx) = 0.05, P z(Hy) = 0.11, P x(Hy) = 0.33,
P y(Hz) = 0.33. The difference in magnitude between the
two sets and the outstanding zero-ness of Py(Hy) suggests
an interplay of two mechanisms.

(i) A triggering mechanism at TN in which the primary
toroidal order parameter T y allowed by the P 21/c

′ symmetry
triggers the onset of secondary order-parameter components
T x and T z reduces the symmetry further to P 1̄′ [19]. Such a
triggering mechanism is expressed by the symmetry-allowed
biquadratic coupling between the toroidal moment compo-
nents in a contribution δ(T y)2(T x,z)2 to the free energy. It
has been shown [19,20] that such a mechanism, illustrated
by the phase diagram of Fig. 5(a), can occur as a first-order
phase transition if the coefficient for the coupling of the order
parameters, here δ, is negative and sufficiently large. In fact,
a marked decrease of the b and c lattice parameters at TN by
about 0.045% was reported in neutron-diffraction experiments
[10]. These data, as well as capacitance dilatometry and
specific-heat measurements, do not identify a discontinuity
or hysteresis at TN . This points to a weak first-order character
of the phase transition. Note that the induced, secondary nature
of T x,z in relation to the triggering, primary nature of T y is
further supported by αij (T x,z) 	 αij (T y).

(ii) A deactivation mechanism under an applied magnetic
field Hy serves as an explanation for the zero-ness of αyy .
The field Hy quenches the �−

1 mode and leaves the �−
2 mode,

thereby shifting the symmetry from triclinic P 1̄′ to monoclinic
Pc [Fig. 5(d)]. For this symmetry, we have αxy , αzy �= 0,
and αyy = 0 so that we get P x,z �= 0, but P y = 0 in the
applied field Hy in agreement with the measurements shown
Fig. 2. In terms of the order parameters, T y is deactivated
by the magnetic field Hy whereas T x,z remain active. Such
a deactivation mechanism is also supported by the small
values found for αxy and αzy , which indicates that these
components are exclusively related to the triggered, secondary-
order-parameter components T x,z, as discussed above.

Although permitted by symmetry, the origin of the bi-
quadratic coupling between the components T y and T x,z of

the toroidal moment vector at the microscopic level is unclear.
A possible way to explain it is to associate T y and T x,z to
the spin and orbital part of the toroidal moment, respectively.
The contribution of the orbital moments of the electron current
density to the internal magnetic field is much smaller than that
of the spins [18], which would explain the order of magnitude
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FIG. 5. (Color online) Schematic phase diagrams associated with
the free-energy F = a1(T y)2 + a2(T y)4 + b1(T x,z)2 + b2(T x,z)4 +
b3(T x,z)6 + δ(T y)2(T x,z)2 − H2(δ1(T x,z)2 + δ2(T y)2 + δ3T

xT z).
Hatched and solid curves represent second- and first-order transitions
curves. T1 to T4 are triple points. N1 and N2 are four-phase points.
Arrows show the thermodynamic paths assumed in our description.
(a),(b) Phase diagrams without applied magnetic fields (H = 0).
(a) Phase diagram for a strong negative δ coupling promoting
the triggering mechanism, so that the P 1̄′ phase is reached in a
single step [δ < −2(|a2|b2)0.5, a2 < 0]. (b) Phase diagram for weak
coupling of the antiferromagnetic order parameters [δ > 2(|a2|b2)0.5,
a2 < 0]. Now the P 1̄′ phase is reached by two successive phase
transitions across the region of stability of the P 21/c

′ phase. (c),(d)
Projections of the field-induced phase diagrams on the (b1,H

x,z)
and (b1,H

y) planes for strong coupling of the order parameters. In
(c) the P1 phase is reached continuously above threshold fields
Hx

th and Hz
th. In (d) the threshold field H

y

th decouples the T y order
parameter and the P 1̄′ phase transforms discontinuously into Pc,
which is a polar subgroup of P 2′

1/c.
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difference in the associated magnetoelectric coefficients. In
addition, some form of spin-orbit coupling between the spin
and orbital part of the toroidal moment would be expected,
and the biquadratic product is the simplest symmetry-allowed
way to achieve it. A remarkable property of this connection
in LiFeSi2O6 is its extreme sensitivity to applied magnetic
fields, attested, e.g., by the deactivation and decoupling of T y

from T x,z in a magnetic field Hy down to the resolution limit
of the experiment. Such sensitivity is in agreement with the
low symmetry of the magnetic phase. The triclinic symmetry
does not impose restrictions on the orientation of the magnetic
moments in three-dimensional space. Hence, a vanishingly
small magnetic field can be sufficient to set the equilibrium
direction of the magnetic moments and of the parameters
derived from their arrangement (such as the toroidal moment)
along a specific direction.

VI. PRIMARY FERROTOROIDICITY VERSUS PRIMARY
ANTIFERROMAGNETISM

A central point of this work is the question whether a
toroidal-free model can provide an equivalent interpretation
of the observed magnetoelectric effects in LiFeSi2O6 via
an exclusive coupling between the antiferromagnetic spin-
density-wave order parameters spanned by the magnetic
modes (Lx

1,L
y

3,L
z
1) and (Lx

3,L
y

1,L
z
3) which, as discussed,

represent the same symmetries as T y and T x,z, respectively.
In terms of symmetry, the required biquadratic coupling
between the two antiferromagnetic order parameters is the
sum of biquadratic products between their respective mag-
netic modes, i.e., (Lx

1)2(Lx
3)2 + (Lx

1)2(Ly

1)2 + (Lx
1)2(Lz

3)2 +
(Ly

3)2(Lx
3)2 + · · · . In terms of physics, their dominating

contributions are those representing the exchange interaction
between the localized spins. This is expressed by (L1 · L3)2,
as the other terms represent relativistic interactions (e.g.,
spin-spin or spin-orbit) which are orders of magnitude smaller
[18]. As depicted in Fig. 1(c), L1 and L3 are approximately
perpendicular to each other. Therefore, the scalar product
L1 · L3 and the corresponding free-energy exchange contribu-
tion ∝(L1 · L3)2 are “geometrically attenuated” by the arrange-
ment of the magnetic moments, an attenuation that does not
apply to the toroidal moment. Thus, a triggering mechanism
based on an antiferromagnetic order parameter seems highly
unlikely in comparison to a triggering mechanism based on a
toroidal order parameter. Instead, as depicted in the phase
diagram of Fig. 5(b), a two-step transition to the triclinic
phase is expected if the antiferromagnetic spin-wave order
parameter is the primary one. In contrast, the solitary transition
observed experimentally in LiFeSi2O6 points to a pronounced
triggering mechanism and, hence, to a primary toroidal order
parameter.

VII. CONCLUSION

In summary, our measurement of the linear magnetoelec-
tric effect reveals that LiFeSi2O6 is a system where the
macroscopic toroidal moment T instead of the antiferro-
magnetic vector L1,3 acts as the primary order parameter.
This identification is based on physical microscopy and
symmetry arguments: For both the toroidal-moment vector
and the antiferromagnetic spin-wave vector, symmetry permits
free-energy contributions with a biquadratic coupling of the
respective vector components. Only the toroidal coupling term,
however, can be large enough to drive a triggering mechanism
with the simultaneous condensation of two irreducible order
parameters, �−

1 + �−
2 , leading from the paramagnetic phase

P 21/c1′ to the experimentally observed triclinic phase P 1̄′ in
a single step.

Note that primary ferrotoroidicity in antiferromagnets has
been discussed before. In Ni-Cl, Co-I, and Co-Br boracites,
a sharp anomaly of the linear magnetoelectric coefficient
αzy was associated to a toroidal order parameter [21,22].
The association to an equally possible antiferromagnetic
order parameter was not discussed, though. Therefore, the
distinction which is the very topic of our work has not
been made and claims for primary ferrotoroidicity are yet
to be justified. Reports on the observation of ferrotoroidic
domains [4] and ferrotoroidic hysteretic switching [5] of a
toroidal-moment vector in LiCoPO4 did not extend to the
question whether the toroidal order parameter is primary or
induced. A distinction between ferrotoroidic and antiferro-
magnetic domains that was originally made for this system
was later given up [1,5]. Additional measurements are also
needed for confirming the primary toroidal origin proposed
for the unusual critical behavior of the magnetic-field induced
polarization in Ba2CoGe2O6 [23].

Various potential primary ferrotoroidic compounds remain
to be investigated. In particular the low-temperature sequences
of weak-ferromagnetic polar phases found in Ni-Cl and Ni-
Br boracites [24], or the specific features disclosed in the
antiferromagnetic phase of LiCrGe2O6 [25], suggest that these
materials could display a similar coupling between toroidal
moment vector components as described for LiFeSi2O6 in the
present work.
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Köln, Germany, 2014.

[15] E. E. Wahlstrom, Optical Crystallography (Wiley, New York,
1960).

[16] H. Stokes and D. Hatch, Isotropy Subgroups of the 230
Crystallographic Space Groups (World Scientific, Singapore,
1988).

[17] G. Ljubarski, Anwendungen der Gruppentheorie in der Physik
(VEB Deutscher Verlag der Wissenschaften, Berlin, 1962).

[18] I. Dzyaloshinskii, Theory of helicoidal structures in antiferro-
magnets. I. Nonmetals, J. Exptl. Theoret. Phys. (U.S.S.R.) 46,
1420 (1964) ,[Sov. Phys. JETP 19, 960 (1964)]; ,The theory of
helicoidal structures in antiferromagnets. II. Metals, J. Exptl.
Theoret. Phys. (U.S.S.R.) 47, 336 (1964) ,[Sov. Phys. JETP 20,
223 (1965)]; ,Theory of helicoidal structures in antiferromagnets.
III., J. Exptl. Theoret. Phys. (U.S.S.R.) 47, 992 (1964) ,[Sov.
Phys. JETP 20, 665 (1965)]; ,Thermodynamic theory of weak
ferromagnetism in antiferromagnetic substances, J. Exptl. The-
oret. Phys. (U.S.S.R.) 32, 1547 (1957) ,[Sov. Phys. JETP 5, 1259
(1957)].

[19] J. Holakovsky, A new type of the ferroelectric phase transition,
Phys. Stat. Sol. 56, 615 (1973).

[20] Y. Gufan and E. Larin, Theory of phase transitions described
by two order parameters, Fiz. Tverd. Tela (Leningrad) 22, 463
(1980) ,[Sov. Phys. Solid State 22, 270 (1980)].

[21] D. Sannikov, Phenomenological theory of the magnetoelec-
tric effect in some boracites, J. Exp. Theor. Phys. 84, 293
(1997).

[22] D. Sannikov, Ferrotoroidic phase transition in boracites,
Ferroelectrics 219, 177 (1998).

[23] P. Tolédano, D. D. Khalyavin, and L. C. Chapon, Spontaneous
toroidal moment and field-induced magnetotoroidic effects in
Ba2CoGe2O7, Phys. Rev. B 84, 094421 (2011).

[24] P. Tolédano, H. Schmid, M. Clin, and J.-P. Rivera, Theory of
the low-temperature phases in boracites: Latent antiferromag-
netism, weak ferromagnetism, and improper magnetostructural
couplings, Phys. Rev. B 32, 6006 (1985).

[25] G. Nénert, M. Isobe, I. Kim, C. Ritter, C. V. Colin, A. N.
Vasiliev, K. H. Kim, and Y. Ueda, Interplay between low
dimensionality and magnetic frustration in the magnetoelectric
pyroxenes LiCrX2O6 (X = Ge, Si), Phys. Rev. B 82, 024429
(2010).

094431-7

http://dx.doi.org/10.1103/PhysRevB.76.214404
http://dx.doi.org/10.1103/PhysRevB.76.214404
http://dx.doi.org/10.1103/PhysRevB.76.214404
http://dx.doi.org/10.1103/PhysRevB.76.214404
http://dx.doi.org/10.1103/PhysRevB.81.214417
http://dx.doi.org/10.1103/PhysRevB.81.214417
http://dx.doi.org/10.1103/PhysRevB.81.214417
http://dx.doi.org/10.1103/PhysRevB.81.214417
http://dx.doi.org/10.1038/nature06139
http://dx.doi.org/10.1038/nature06139
http://dx.doi.org/10.1038/nature06139
http://dx.doi.org/10.1038/nature06139
http://dx.doi.org/10.1038/ncomms5796
http://dx.doi.org/10.1038/ncomms5796
http://dx.doi.org/10.1038/ncomms5796
http://dx.doi.org/10.1038/ncomms5796
http://dx.doi.org/10.1016/0370-1573(90)90042-Z
http://dx.doi.org/10.1016/0370-1573(90)90042-Z
http://dx.doi.org/10.1016/0370-1573(90)90042-Z
http://dx.doi.org/10.1016/0370-1573(90)90042-Z
http://dx.doi.org/10.1088/0953-8984/20/43/434201
http://dx.doi.org/10.1088/0953-8984/20/43/434201
http://dx.doi.org/10.1088/0953-8984/20/43/434201
http://dx.doi.org/10.1088/0953-8984/20/43/434201
http://dx.doi.org/10.1088/0953-8984/19/43/432201
http://dx.doi.org/10.1088/0953-8984/19/43/432201
http://dx.doi.org/10.1088/0953-8984/19/43/432201
http://dx.doi.org/10.1088/0953-8984/19/43/432201
http://dx.doi.org/10.1016/j.jssc.2009.06.013
http://dx.doi.org/10.1016/j.jssc.2009.06.013
http://dx.doi.org/10.1016/j.jssc.2009.06.013
http://dx.doi.org/10.1016/j.jssc.2009.06.013
http://dx.doi.org/10.1007/s002690100159
http://dx.doi.org/10.1007/s002690100159
http://dx.doi.org/10.1007/s002690100159
http://dx.doi.org/10.1007/s002690100159
http://dx.doi.org/10.1002/pssb.2220560224
http://dx.doi.org/10.1002/pssb.2220560224
http://dx.doi.org/10.1002/pssb.2220560224
http://dx.doi.org/10.1002/pssb.2220560224
http://dx.doi.org/10.1134/1.558116
http://dx.doi.org/10.1134/1.558116
http://dx.doi.org/10.1134/1.558116
http://dx.doi.org/10.1134/1.558116
http://dx.doi.org/10.1080/00150199808213514
http://dx.doi.org/10.1080/00150199808213514
http://dx.doi.org/10.1080/00150199808213514
http://dx.doi.org/10.1080/00150199808213514
http://dx.doi.org/10.1103/PhysRevB.84.094421
http://dx.doi.org/10.1103/PhysRevB.84.094421
http://dx.doi.org/10.1103/PhysRevB.84.094421
http://dx.doi.org/10.1103/PhysRevB.84.094421
http://dx.doi.org/10.1103/PhysRevB.32.6006
http://dx.doi.org/10.1103/PhysRevB.32.6006
http://dx.doi.org/10.1103/PhysRevB.32.6006
http://dx.doi.org/10.1103/PhysRevB.32.6006
http://dx.doi.org/10.1103/PhysRevB.82.024429
http://dx.doi.org/10.1103/PhysRevB.82.024429
http://dx.doi.org/10.1103/PhysRevB.82.024429
http://dx.doi.org/10.1103/PhysRevB.82.024429



