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Abstract

We present thermal expansion a, magnetostriction and specific heat C measurements of TlCuCl3, which shows a quantum phase

transition from a spin-gap phase to a Néel-ordered ground state as a function of magnetic field around HC0 ’ 4:8T. Using Ehrenfest’s

relation, we find huge pressure dependencies of the spin gap for uniaxial as well as for hydrostatic pressure. For T ! 0 and H ’ HC0 we

observe a diverging Grüneisen parameter GðTÞ ¼ a=C, in qualitative agreement with theoretical predictions. However, the predicted

individual temperature dependencies aðTÞ and CðTÞ are not reproduced by our experimental data.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Low-dimensional quantum magnets show very rich and
fascinating physical properties [1]. As a starting point, one
may consider isolated spin-1

2
dimers with an antiferromag-

netic coupling J causing a singlet ground state and an
excited triplet state, which are separated by an energy gap
D ¼ J. If such dimers are magnetically coupled to each
other, a multitude of different theoretical models can be
constructed, depending on the strength and the geometric
arrangement of the inter-dimer coupling(s) J 0. As a
consequence of one (or more) non-zero J 0, finite disper-
sion(s) of the triplet state evolve along the respective
direction(s) in reciprocal space, i.e. the excited triplets may
hop along different directions. Of particular interest are
one-dimensional (1D) chains with alternating couplings J

and J 0 between neighboring spins, because of qualitatively
different excitation spectra of the alternating (J 0aJ) and
the uniform (J 0 ¼ J) chain [2]. Another example of 1D

coupled spin dimers is represented by the so-called spin-
ladders with the couplings J? and Jk along the rungs and
legs of the ladder, respectively. The excitation gap of two-
leg ladders is finite, while it vanishes for a three-leg spin-
ladder [3]. This difference is easily understood in the limit
J?bJk, where the two-leg ladder can be viewed as weakly
coupled dimers and the three-leg ladder as an effective S ¼
1
2
chain with uniform chain coupling Jk. With increasing

number of legs, the spin ladders approach the 2D
antiferromagnetic square lattice. Another well-studied
system of 2D-coupled spin dimers is the 2D Shastry–-
Sutherland model [4], which can be generated from the 2D
square lattice by introducing one additional diagonal
coupling JD on every second square. The triangular
arrangement of one JD and two J causes a strong
frustration and for J=JDt0:7 the product state of singlets
on every diagonal is the exact ground state.
The above-mentioned models have been studied very

intensively by theoretical as well by experimental physicists
during the last decades, since a large number of materials
became available which rather well represent various types
of these models [1]. Some cuprate examples are: the 2D
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square lattice realized by the parent compound La2CuO4

of the high-Tc’s, the spin-Peierls system CuGeO3 [5], spin-
1
2

chain and ladder compounds, such as Sr2CuO3 and
SrCu2O3, respectively, as well as Sr14Cu24O41 containing
both, spin chains and spin ladders [6], or the 2D
Shastry–Sutherland model which is realized in
SrCu2ðBO3Þ2 [7].

TlCuCl3 is another quantum spin system which has been
intensively studied in recent years [9,10]. From the
structural point of view this compound contains a ladder-
like arrangement of Cu2þ ions [9]. The main magnetic
coupling J ’ 5:5meV is present along the rungs, but there
are various additional, rather large couplings J 0 present
along different other lattice directions [11–14]. Thus, the
magnetic system of TlCuCl3 should be viewed as a set of
three-dimensionally coupled spin dimers. The inter-dimer
couplings J 0 cause a strong dispersion of the triplet
excitations, and as a consequence the minimum singlet–tri-
plet Dm ’ 0:7meV is much smaller than J. A moderate field
of about 5T is already sufficient to close Dm and induces a
Néel order with staggered magnetization perpendicular to
the applied field. If there is no magnetic anisotropy in the
plane perpendicular to the applied field, this transition is in
the same universality class as the Bose–Einstein condensa-
tion (BEC) and it is often termed a BEC of magnons. In the
zero-temperature limit, it represents an example of a
quantum phase transition [15], whose control parameter
is the magnetic field strength (see Fig. 1). In the vicinity of a
quantum critical point (QCP) anomalous temperature
dependencies are expected for various physical properties,
as e.g. specific heat C, susceptibility w, thermal expansion
a, (and resistivity r for metals) [16]. In particular, a
divergence of the so-called Grüneisen parameter G ¼ a=C

is expected, when a pressure-dependent QCP is approached
[17]. Experimentally, a diverging GðTÞ has indeed been
observed for different heavy-fermion compounds [18,19].
Since the phase transition of TlCuCl3 is extremely
sensitive to pressure [20–23] and the control parameter
may be easily tuned by a variation of the field, this
compound is ideally suited to study such generic properties
of a QCP.

We present high-resolution measurements of the uniaxial
thermal expansion ai ¼ q lnLi=qT and the magnetostric-
tion �i ¼ ½LiðHÞ � Lið0Þ�=Lið0Þ along different lattice direc-
tions i (Li is the respective sample length along i) as well as
specific heat C and magnetization M data. The length
changes have been measured down to 250mK by a home-
built capacitance dilatometer and C by a home-built
calorimeter for T\500mK, while the magnetization has
been studied by a commercial vibrating sample magnet-
ometer (Quantum Design) for T\1:9K. All properties
have been studied in magnetic fields up to 14T. Since
TlCuCl3 easily cleaves along the (0 1 0) and ð1 0 2̄Þ planes of
the monoclinic structure, we measured LiðH ;TÞ perpendi-
cular to these planes on a single crystal of dimensions 1:7�
1:5mm2 perpendicular to (0 1 0) and ð1 0 2̄Þ, respectively. In
addition, the [2 0 1] direction, which is perpendicular to

both other directions, was measured on a second crystal of
length L½2 0 1� ¼ 4:4mm. For all three measurement direc-
tions i the magnetic field was applied along the same
direction, namely perpendicular to the ð1 0 2̄Þ plane.

2. Results and discussion

Fig. 2 shows ai measured along all three directions for
different magnetic fields. In zero field, ai has no visible
anomalies, but is strongly anisotropic. For H\5T,
pronounced anomalies develop and shift systematically
towards higher T with increasing H. The ai curves for i ¼

ð0 1 0Þ and ð1 0 2̄Þ agree well with our previous results
measured on a different crystal for T\3K [22,24]. The
anomalies of ai signal large uniaxial pressure dependencies
of TN, which are related to a and C via Ehrenfest’s
relations

qTN

qpi

¼ VmTN
Dai

DC
and

qHC

qpi

¼ Vm
Dli

Dw
. (1)

Here, Vm is the molar volume and Dai and DC denote the
respective mean-field jumps at TN. The second expression
of Eq. (1) relates the pressure dependencies of the
transition field to the jumps of li ¼ q�i=qH and of the
differential magnetic susceptibility w ¼ qM=qH. For i ¼

ð0 1 0Þ and ð1 0 2̄Þ, the qTN=qpi largely cancel each other
under hydrostatic pressure, since the anomalies are of
comparable magnitudes but of opposite signs. Thus, the
hydrostatic pressure dependence qTN=qphydro is essentially
determined by the sign and size of the anomaly of a201.
Obviously, the anomalies of a201 are the largest ones and
their positive signs mean that TN drastically increases for
uniaxial pressure along ½2 0 1� as well as for hydrostatic
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Fig. 1. Left: Phase boundary of TlCuCl3 obtained from magnetostriction

(�) and thermal expansion (�). The dashed line is a fit of the form HCðTÞ ¼

HC0 þ a � Tf for Tp2K, which yields HC0 ¼ 4:82T and f ¼ 1:85, while
the solid line is a fit up to 8K yielding f ¼ 2:1. The T dependence of f is

shown in the inset by the plot of HC �HC0 versus T on double-

logarithmic scales, and is also obtained by quantum Monte Carlo

calculations [8]. Right: Schematic view of the phase diagram around the

quantum phase transition from a spin-gap to a Néel-ordered ground state

at HC0. The dotted line shows the spin-gap closing due to the Zeeman

splitting, and the dashed lines indicate the region of enhanced quantum

fluctuations at T40. The thick solid line is the phase boundary TNðHÞ

and the thin solid lines indicate the region of enhanced thermal

fluctuations.
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pressure. Fig. 3 shows the field derivatives of the
magnetostriction. Again, we find the characteristic aniso-
tropy that the anomalies of l010 and l102̄ are of similar sizes
but opposite signs, while significantly larger anomalies are
present for l201. Thus, the hydrostatic pressure dependence
of HC is again essentially identical to that for uniaxial
pressure along ½2 0 1�.

In Ref. [22] we have shown that the pressure dependen-
cies of TN, HC , and the magnetic susceptibility in the
paramagnetic phase can be traced back to the pressure-
dependent changes of a single parameter, which in the case
of TlCuCl3 is the intra-dimer coupling J. This conclusion
was based on the measurements perpendicular to the ð0 1 0Þ
and ð1 0 2̄Þ planes, and is fully confirmed by the additional
new data along the ½2 0 1� direction. From the zero-
temperature extrapolations of the uniaxial pressure depen-
dencies of HC for i ¼ ð0 1 0Þ and ð1 0 2̄Þ we estimated
q lnDm=qpi ’ þ190%/GPa and ’ �180%/GPa. Since the
anomalies for the ½2 0 1� direction are about twice as large,
we obtain q lnDm=qpi ’ �370%/GPa for pressure along
½2 0 1� and ’ �360%/GPa for hydrostatic pressure. The
latter value is in reasonable agreement with direct
measurements under hydrostatic pressure, which yield
q lnDm=qphydro ’ �400%/GPa for the initial slope at
ambient pressure [23].

The shape of the ai anomalies is typical for a second-
order phase transition with a pronounced mean-field
contribution causing a jump Da at TN, superimposed by
fluctuations causing a divergence a / tn with the reduced
temperature t ¼ jT � TNj=TN and the critical exponents n
depending on the universality class of the phase transition.
On approaching HC0 ¼ HCðT ! 0Þ ’ 4:8T, the ai anoma-
lies broaden to some extent (see below). The li anomalies
also show a pronounced fluctuation contribution for
T42K, but become more jump-like for lower T. The
changing shapes of both, the li and the ai anomalies can be
intuitively understood from Fig. 1, because (i) the absolute
temperature region around the phase boundary where
fluctuations become important decreases with decreasing
TN, and (ii) close to HC0 the phase boundary is crossed
with a very small slope as a function of T, so that the fact

that HC is not infinitely sharp becomes more and more
important. As a criterion for HC , we used the maximum of
the second derivatives q2�i=qH2, whose full widths at half
maximum amount to ’ 0:45T (see inset of Fig. 3). We
suspect that this width mainly arises from internal stresses,
which broaden the transition due to the strong (uniaxial)
pressure dependencies of HC . We have also investigated,
whether there is a finite hysteresis of HC by measuring
�iðHÞ with increasing and decreasing H. For a drift rate of
�0:1T/min we obtain a difference H

up
C �Hdown

C ’ 0:04T,
which does hardly change with temperature. At T ¼ 0:3K
we also measured with �0:01T/min and found
H

up
C �Hdown

C ’ 0:01T, i.e. the observed hysteresis partly
arises from the finite field drift. Thus, we regard the phase
transition as a second-order one with a weak first-order
contribution. The first-order contribution most probably
arises from the large spin-lattice coupling, which may drive
a second-order into a first-order transition [25]. It is also
possible that a transition transforms from second to first
order, when T c is suppressed towards 0K by an external
parameter. However, the weak temperature-dependence of
the hysteresis observed in TlCuCl3 does not give any
evidence for such a scenario, and we suspect that the
transition of TlCuCl3 remains (almost) continuous down to
lowest T.
As mentioned above, a diverging Grüneisen parameter

GðT ! 0Þ has been predicted at H ¼ HC0 [17]. Before
comparing our experimental data to this prediction,
we will discuss from a phenomenological point of view
what may be expected for G when the QCP is approached
along different routes in the phase diagram. Using
Maxwell’s relations one finds that a ¼ �qS=qp,
while C=T ¼ qS=qT . If a thermodynamic system
can be described by a single energy scale E, its entropy
S only depends on the ratio T=E, i.e. SðT ;EÞ ¼ SðT=EÞ

with a model-dependent function SðxÞ. Comparing
the T- and p-derivatives of SðT=EðpÞÞ yields the Grüneisen
scaling

G ¼
aðTÞ
CðTÞ

¼
q lnE

qp
, (2)
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which is temperature independent. Prominent examples of
such systems are the Debye model with E ¼ YD, the almost
free electron gas with E ¼ EF, or magnetically ordered
states with exchange coupling J ¼ E (for T5T c). In real
systems, one usually observes a weakly T-dependent GðTÞ,
which is due to the fact that the above-mentioned single-
parameter models only consider the leading energy scale
and neglect others. If several energy scales Ei are equally
important, the individual Ei usually have different pressure
dependencies, and therefore the p- and T-derivatives are, in
general, not (almost) proportional to each other. However,
it is possible that for different temperature regions different
Ei’s are dominant and in the respective regions G ’
q lnEi=qp holds. An example is a coupled spin-dimer
system as it is realized in TlCuCl3. For high temperatures
(TbJ; J 0), the behavior is determined by the average spin
gap hDi, while the minimum gap Dm becomes dominant at
T5Dm. Thus, GðTÞ varies from ’ q lnDm=qp to ’
q lnhDi=qp with increasing T. In TlCuCl3, the zero-field
gap D0

m ’ 8K linearly decreases with H [13],
i.e. DmðHÞ ¼ D0

m � h where h ¼ g H=kB, g is the g-factor
and kB Boltzmann’s constant. Thus, at a given field
HoHC0 the temperature, below which G is expected to
approach a constant, decreases with H. For H ! HC0,
however, GðT5DmÞ ’ 1=DmðHÞ � qD0

m=qp diverges, be-
cause Dm! 0.

For H4HC0, i.e. in the ordered phase, the characteristic
low-temperature energy scale is given by the spin wave
velocity v. To our knowledge, the exact dependence of v on
H �HC0 is not known, but it is quite natural that v

disappears when HC0 is approached. For simplicity, we
assume v / ðH �HC0Þ

n with n40 and derive
GðT ! 0Þ ’ q ln v=qp / 1=ðH �HC0Þ � qHC0=qp. Thus,
the Grüneisen parameter is again expected to approach a
constant, which diverges for H ! HC0, but the sign of the
divergence for H4HC0 is opposite to that for HoHC0.

In a next step we will approach the QCP along the phase
boundary TNðHÞ for H4HC0. For clarity, we use the
approximation TNðHÞ ¼ b H �HC0ð Þ

j with j ¼ 1=f! 2
3

for H ! HC0 (see Fig. 1 and Refs. [8,26]), and calculate

qTN=qp ¼ �jb H �HC0ð Þ
ðj�1Þ
� qHC0=qp. Obviously,

qTN=qp diverges for H ! HC0 for jo1, and the sign of
this divergence is opposite to the sign of qHC0=qp. We
emphasize that this result follows from the infinite slope of
the phase boundary for H ! HC0, and does not depend on
the particular choice of TNðHÞ. Since the pressure
dependence of TN is given by Ehrenfest’s relation (1), the
ratio Da=DC of the thermal-expansion and specific-heat
anomalies at TN is expected to diverge for H ! HC0.
From Eq. (1), it is also clear that the vanishing TN would
cause a divergence of Da=DC even if the slope of the phase
boundary was finite and qTN=qp would thus not diverge
for H ! HC0.
Let us summarize the above considerations. On ap-

proaching HC0 we expect (i) for HoHC0 that
GðT5DðHÞÞ ! q lnDðHÞ=qp, which diverges for
H ! HC0, (ii) for H4HC0 a similar divergence of
GðT ! 0Þ, but of the opposite sign, and (iii) a divergence
of the ratio Da=DC, which has the same (opposite) sign as
the divergence of G above (below) HC0. Since the above
considerations are rather general, one may expect a
divergence of GðTÞ close to many kinds of transitions,
whose Tc is suppressed to 0K. To obtain more information
about a quantum phase transition, one has to consider the
actual temperature dependencies aðTÞ, CðTÞ, and/or GðTÞ,
as it has been done e.g. by the authors of Refs. [17,27,28].
In Fig. 4 we show the specific heat anomalies for

different magnetic fields. In agreement with Ref. [29] we
find rather small anomalies even for the largest field, and
their magnitude rapidly decreases when HC0 is approached
(see inset of Fig. 4). Since the magnitude of the respective ai

anomalies changes much less with field (see Fig. 2), the
expected divergence of qTN=qpi for H ! HC0 is obviously
confirmed by the experimental data, since the denominator
in Eq. (1) vanishes. This is the case for all three directions
of uniaxial as well as for hydrostatic pressure. In the right
panel of Fig. 4 we show an expanded view of the low-
temperature behavior of some CðT ;HÞ=T curves. For zero
field, the onset of an anomaly can be clearly seen [30], and
this anomaly is suppressed above about 3T. We suspect
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that this anomaly arises from an ordering of magnetic
impurities. The presence of such impurities is also evident
from the finite magnetization in the gap region HoHC0 at
low T, which can be well reproduced by Brillouin functions
(see Fig. 5). The corresponding fits of the data at T ¼ 1:9
and 2.5K yield 0.4% of magnetic impurities with spin
S ¼ 1. The Brillouin function calculated for the same
parameters and T ¼ 4K is somewhat smaller than the
experimental data for H\1T. This is expected, because at
this higher temperature a sizeable magnetization from
excited triplets is already present. Probably, the S ¼ 1
impurities are mostly ferromagnetically aligned spin
dimers, because the intra-dimer coupling between the
spin-1

2
Cu2þ ions arises from a ’ 96� superexchange via

the p orbitals of the Cl� ions, which is very sensitive to
changes in the bond angle. The impurities strongly
influence the low-temperature behavior of CðTÞ for low
fields, but become much less influential at higher fields
because the moments are almost completely saturated for
H\3T and Tt2K. It is, however, unclear to what extent
the impurities may change the (critical) behavior close to
the phase transition.

Fig. 6 shows an expanded view of the low-T behavior of
ai=T . In zero field, ai=T continuously approaches zero for
T ! 0, while for larger H it shows a pronounced shoulder,
which systematically increases and reaches a maximum
slightly below HC0. For larger fields clear anomalies with a
sign change of ai=T occur, and these anomalies system-
atically sharpen with further increasing field. The behavior
is essentially the same for all three directions, only the
magnitudes and signs are different [31]. As already
mentioned, we attribute the broadening of the anomalies
when HC0 is approached from larger fields to the finite

width of the phase transition. This also explains that the
aiðTÞ curves show anomalies already for H\4:6T,
i.e. below HC0 ’ 4:8T determined by the magnetostriction
measurements.
In Fig. 7 we present Gi for different magnetic fields. For

all three directions Gi shows the tendency to diverge with
decreasing T for H ’ 4:5T. For lower H, the GiðTÞ follow
the same curve at higher T, but seem to approach finite
values for T ! 0. The magnitudes of these limiting values
increase with increasing field and the temperature, below
which the deviation sets in, decreases. The GiðTÞ for
H4HC0 also follow the general curve at higher T, until a
large anomaly signals the crossing of the phase boundary.
For all three directions, the magnitudes of these anomalies
drastically increase with decreasing H and the signs are
opposite to the respective signs of the diverging GiðTÞ for
HoHC0.
On this qualitative level, our experimental data of GiðTÞ

very well confirm the behavior, which one can expect from
the above considerations of the gap closing for HoHC0

and the shape of the phase boundary for H4HC0. For a
deeper understanding, one has to compare the experi-
mental data quantitatively to theoretical predictions.
According to Ref. [17] the following temperature depen-
dencies are expected H ¼ HC0:

C=T /
ffiffiffiffi

T
p

; a=T / 1=
ffiffiffiffi

T
p

and G / 1=T . (3)
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In the upper right panel of Fig. 7 we show the diverging
GiðTÞ for HtHC0 on double-logarithmic scales. Because
of the negative signs, G102 and G201 have been divided by
the factors �2 and �3, respectively. Apparently, the slope
is the same within experimental accuracy. The solid line is a
power-law fit of G010 which yields T�4=3 and describes the
experimental data reasonably well for about one decade.
For comparison, the predicted 1=T behavior is also shown
(dashed line). In view of the fact that the theoretical
prediction only considers the irregular contributions of C

and ai, while the experimental data also contain the
phononic contributions of C and ai, one may tend to the
conclusion that our data nicely confirm the theoretical
prediction for GðTÞ. However, the agreement between
theory and experiment becomes much worse when the
individual temperature dependencies of C=T and ai=T are
considered. Neither the data of Fig. 4 nor those of Fig. 6
give any indication to follow the predicted temperature
dependencies of Eq. (3). Concerning the specific heat data,
one might argue that the predicted

ffiffiffiffi

T
p

behavior is difficult
to identify because of the phononic contribution and the
influence of the magnetic impurities. This argument is less
convincing for aiðTÞ=T , since (i) the predicted divergence
should be seen despite a (regular) phononic contribution
and (ii) the ordering of the magnetic impurities does not
cause a sizeable anomaly in the zero-field data [31]. Thus,
we conclude that our present experimental data of
TlCuCl3 do not confirm the theoretical predictions [17].
However, our data do not disprove the theoretical
predictions either. Experimentally, one can suspect that
in order to observe the predicted temperature dependencies
it would be necessary to study (i) samples with significantly
reduced transition widths and less magnetic impurities, and
(ii) it might be necessary to extend the measurements to
lower temperatures. Moreover, the theoretical predictions
have been calculated for clean and isotropic systems. It is
not clear to what extent the temperature dependencies of a
and C are influenced by disorder or a finite magnetic
anisotropy. The latter is reflected in the ’ 10% anisotropy
of the g factors of TlCuCl3 for different magnetic field
orientations [32].

3. Summary

In summary, we have presented high-resolution mea-
surements of thermal expansion and magnetostriction
along different lattice directions of TlCuCl3. Both quan-
tities show very pronounced and strongly anisotropic
anomalies at the phase boundary of the field-induced Néel
order TNðHÞ for H4HC0, and signal very large and
strongly anisotropic uniaxial pressure dependencies of the
transition temperatures and fields. The hydrostatic pressure
dependence of the spin gap Dm for H ! HC0 obtained
from our data using Ehrenfest’s relations is in reasonable
agreement with the value observed by direct measurements
under hydrostatic pressure. In addition, our data confirm
the diverging pressure dependencies qTN=qpi for

H ! HC0, which are expected from the infinite slope
qTN=qH of the phase boundary for H ! HC0, i.e. when
the QCP is approached. For HoHC0, the Grüneisen
parameters Gi ¼ ai=C are expected to approach constant
values for T5DðHÞ, which diverge for H ! HC0, and
GiðTÞ / 1=T has been predicted at H ¼ HC0. In fact, the
experimental GiðTÞ for all three measurement directions are
in qualitative agreement with these expectations. However,
the temperature dependencies predicted for the individual
quantities aiðTÞ and CðTÞ are not observed experimentally.
For H ’ HC0 the low-T behavior of both ai and C is
influenced by the finite transition width and for lower fields
at least CðTÞ is also affected by the presence of magnetic
impurities. Thus, future measurements on samples of
improved quality as well as calculations considering the
influence of disorder and weak magnetic anisotropy may
clarify the reasons for the puzzling temperature dependen-
cies of aiðTÞ, CðTÞ, and GiðTÞ.
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