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We present experiments on the thermal transport in the spin- 1
2 chain compound copper pyrazine

dinitrate Cu�C4H4N2��NO3�2. The heat conductivity shows a surprisingly strong dependence on the
applied magnetic field B, characterized at low temperatures by two main features. The first one appearing
at low B is a characteristic dip located at �BB� kBT, that may arise from umklapp scattering. The second
one is a plateaulike feature in the quantum critical regime, �BjB� Bcj< kBT, where Bc is the saturation
field at T � 0. The latter feature clearly points towards a momentum and field-independent mean free path
of the spin excitations, contrary to theoretical expectations.
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In the last decade, considerable progress has been
achieved in theoretical studies of thermal transport in
one-dimensional (1D) quantum spin systems (for a recent
review, see Ref. [1]). One of the most important model
systems is the Heisenberg spin S � 1

2 chain with isotropic
antiferromagnetic interactions, described by

 H � J
XN
i

SiSi�1 � g�BB
XN
i

Siz; (1)

where J is the intrachain nearest-neighbor exchange and
g�B the magnetic moment. Recently, a number of non-
trivial effects were predicted for the spin thermal conduc-
tivity (�s) of this system in external magnetic fields B [2–
7]. Of particular interest is the behavior close to the satu-
ration field Bc � 2J=g�B, which defines a quantum criti-
cal point [8]. Experimental information on �s�B� is,
however, missing because most of the known realizations
of the Hamiltonian (1) have large values of the intrachain
exchange constant J=kB � 100–1000 K, that severely lim-
its the region of the phase diagram accessible using stan-
dard laboratory equipment. The existing results are limited
to studies of the phonon thermal conductivity �ph�B; T� in
CuGeO3 and Yb4As3 [9–12], and do not address the be-
havior of �s�B; T�.

Copper pyrazine dinitrate Cu�C4H4N2��NO3�2 (CuPzN)
appears to be an ideal compound for the thermal conduc-
tivity experiments in magnetic field, as J=kB � 10:3 K
[13,14] and therefore Bc � 15:0 T, which is easily acces-
sible experimentally. CuPzN has an orthorhombic structure
with lattice constants a � 6:712 �A, b � 5:142 �A, and c �
11:73 �A at room temperature [15]. The chains of Cu2�

spins S � 1
2 run along the a axis. Inelastic neutron scatter-

ing, magnetization, and specific heat measurements have
confirmed that CuPzN is very well described by the model
of Eq. (1) [13,14,16]. The 1D nature of the spin interaction
is reflected by a very low ordering temperature, TN �
0:107 K, and therefore the ratio of interchain (J0) to intra-

chain (J) couplings is estimated to be tiny, jJ0=Jj � 4:4�
10�3 [17].

In this Letter, we report measurements of the thermal
conductivity ��B; T� of CuPzN in the temperature region
between 0.37 and 10 K and in magnetic fields up to 17 T.
The crystals of CuPzN were grown from water solution of
pyrazine and Cu nitrate via slow evaporation. The crystals
have right-prism shapes with the a axis of length 10 mm
directed along the height of the prism. The dimensions
perpendicular to the a axis are typically of the order of
0:4� 0:7 mm2. Thermal conductivity was measured by a
standard steady-state heat-flow technique, where the tem-
perature difference was produced by a heater attached to
one end of the sample and monitored by a matched pair of
RuO2 thermometers. The temperature difference between
the thermometers was of the order of 1% of the mean
temperature T. In one sample the heat flux was oriented
along the a axis to measure the thermal conductivity
parallel to the chains (�k). On another sample, the thermal
transport perpendicular to the chains (�?) was measured.
Magnetic fields were oriented parallel to the a axis.

In Fig. 1, we show the temperature dependence of �k and
�? in constant magnetic fields. The important observation
is that B strongly influences �k, but no significant changes
of �? with field are observed. In CuPzN, the magnetic
interaction between the spin chains is extremely weak.
Therefore one expects that the heat current perpendicular
to the chains is of purely phononic origin, �? � �?ph,
consistent with the observed absence of a significant field
dependence. Along the chain direction, �k ��0k

ph��m, one
can separate the field-independent phononic contribution,
�0k

ph�T�, unrelated to the presence of the spin chains, from a
B dependent magnetic contribution, �m�B; T�. Three terms
contribute to �m � ��kph � �s � �sp. First, the scattering
by spin excitations affects the lifetime of phonons and
gives rise to a decrease ��kph of the phononic thermal
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conductivity. Second, there is a spin contribution �s to the
thermal transport. Finally, a spin-phonon cross term �sp
describes the ‘‘drag‘‘ of spin heat currents by phononic
heat currents (and vice versa). For constant T, the differ-
ence between the total measured �k�B� and its zero-field
value �k�B � 0� allows one to extract the field dependence
of the magnetic heat conductivity �m�B; T� � �m�0; T�.

In Fig. 2, we plot 	�k�B� � �k�0�
=T � 	�m�B� �
�m�0�
=T at several constant temperatures. Depending on
T, one can distinguish two types of behavior. The crossover
between these two types occurs at about 2.5–3 K. At low
temperatures, T � J=kB, �m�B� has two main features: a
decrease with a minimum at low fields and another de-
crease at higher fields. On top of the high-field decrease,
there is a plateaulike feature in the vicinity of the critical
field Bc. At high temperatures, �m�B� has a simpler shape
with a single minimum close to Bc=2. The circles in Fig. 3
show the positions of the �m�B�minima. In the same figure
the triangles, determined as the inflection points of �m�B�
curves, characterize the size of the plateaulike regions in
the vicinity of Bc.

For the interpretation of these data, we first note that a
spin gap � g�B�B� Bc� opens when B exceeds Bc [18].
Therefore, for g�B�B� Bc� � kBT, both heat transport
by spin excitations and phonon scattering by spin excita-
tions should vanish. In our experiment, �m�B� decreases
with increasing B> Bc for low T < 2:5 K. Thus, the ob-
served field dependence of the thermal conductivity arises
dominantly from thermal transport in the spin system and
not from ��kph. The overall decrease of �m towards lower
T, see Fig. 1, suggests that impurity scattering dominates
spin-phonon scattering. Therefore, spin-phonon drag terms
should not be important. This allows us to associate �m
with the spin thermal conductivity �s. We model �s using a
combination of a relaxation time approximation and a
mean-field theory (MFT) for the spin chain relying on
mapping Eq. (1) onto a system of interacting spinless
fermions via the Jordan-Wigner transformation [19]. The
total weight of the frequency-dependent spin thermal con-
ductivity,

R
��!�d!, in Heisenberg chains calculated

within the MFT approach has been shown to be in reason-
able agreement with exact results of the Bethe ansatz
calculations [6,20]. The fermions occupy a cosine band
which, at B � 0, is half-filled with the chemical potential
at kF � �=2a. An external magnetic field shifts the
chemical potential and changes the band width. The dis-
persion of the fermions is

 "k � �J�1� 2�� cos�ka� � g�BB� 2Jm; (2)

where k is the wave vector and a is the distance between
neighboring spins. The parameter � and the average local
magnetization m are determined self-consistently from
� � a

�

R�=a
0 cos�ka�fkdk and m � � 1

2�
a
�

R�=a
0 fkdk

where fk � 	exp�"k=kBT� � 1
�1 is the Fermi distribution
function. The spin thermal conductivity is given by

 �s �
Na
�
L2; (3)
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FIG. 2. Thermal conductivity parallel to the chains of CuPzN
as a function of B k a at several fixed temperatures.
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FIG. 3. A (B, T) diagram of the characteristic features of the
thermal conductivity of CuPzN. The circles correspond to the
minima of �m�B�. The triangles correspond to the inflection
points of �m�B� in the vicinity of Bc. The solid lines are the
positions of the �m�B� inflection points calculated for a constant
mean free path (see text).
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FIG. 1. The thermal conductivity of CuPzN parallel and per-
pendicular to the spin chains as a function of temperature in
several constant magnetic fields. The solid circles correspond to
the calculated zero-field spin thermal conductivity along the
chains (see text).
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 Ln �
Z �=a

0

dfk
dT

"n�1
k v2

k�k dk; (4)

N is the number of spins per unit volume, vk � d"k=dk is
the velocity and �k is the relaxation time related to the
mean free path lk as �k � lk=vk.

As discussed above, scattering by defects is expected to
be the most important source of extrinsic scattering at low
T. Assuming for the moment a mean free path, lk�B; T� �
l�T�, which is independent of both magnetic field and
momentum, we can calculate �sl�1 from Eq. (3) as a
function of B and T without free parameters. For our
calculations, we used the experimental values of the g
factor parallel to the a axis g � 2:05 from Ref. [21] and
J=kB � 10:3 K from Ref. [14]. The resulting 	�s�B� �
�s�0�
=lT is shown in Fig. 4(a) for several T. The calcu-
lations obviously give correct qualitative account for the
experimentally observed behavior at intermediate and high
fields for all T. It reproduces the crossover from the low-T
to the high-T behavior around 3 K and predicts the low-T
plateaulike features at Bc with the correct width. In Fig. 3,
the calculated inflection points of �s�B� (solid lines) are in
good agreement with the experiment. Close to the satura-
tion field, i.e., at the quantum critical point, one finds the
following scaling relation:

 

�s
Tl
�
Nak2

B

@
f
�
g�B�B� Bc�

kBT

�
;

f�x� �
Z 1

0

�x� y�2

4� cosh	�x� y�=2
2
dy

�
�
6
�

8><
>:

2� 3exx2=�2; x��1

1� x3=�2�2�; jxj � 1

e�x�x2 � 2x� 2�6=�2; x� 1

(5)

where f�x� is a dimensionless scaling function independent
of the precise dispersion of the spin excitations.

The comparison of the theoretical curves for various
assumptions on the momentum dependence of the scatter-
ing rate, Fig. 4(b), with our experimental results, Fig. 2,
clearly supports a mean free path which depends on T but
not on momentum and magnetic field at least close to the
quantum critical point. Note that close to Bc, the mapping
of the spin chain to free fermions becomes exact and one
may therefore hope that a simple Boltzmann description
becomes asymptotically exact (if strong localization by
disorder can be neglected). Here one has to emphasize
that the observation of a constant mean free path is highly
surprising in a one-dimensional system. In the limit of
weak disorder (small potential strength compared to T or
jB� Bcj) the golden-rule scattering rate 1=�k is propor-
tional to the density of states, 1=�k / 1=vk, where vk is the
velocity of the spin excitations, and therefore one gets lk /
v2
k. Luttinger liquid corrections to this formula are ex-

pected to vanish close to the quantum phase transition
when the density of spin excitations is small. In the oppo-
site limit of strong impurities, the spin excitations have to
tunnel through the potential and the conductivity is pro-
portional to the transmission rate, Tk / v2

k, implying that
l / Tk / v2

k, as in the limit of weak disorder. However, the
heat conductivity, calculated assuming lk / v2

k, is feature-
less at B � Bc, in clear disagreement with the experiment,
see Fig. 4(b).

What are possible mechanisms which can lead to a
constant mean free path? In the absence of inelastic scat-
tering, interference effects lead to localization of the spin
excitations but neither the observed T dependence of �, see
Fig. 1, nor the constant mean free path point towards the
importance of localization effects. Nevertheless, rare de-
fects may cut the spin chains into separate pieces of finite
length. In such a situation, the effective mean free path is
determined either by scattering from one spin chain to the
next or—more likely—by coupling heat currents in and
out of these pieces of spin chains by lattice vibrations. The
first scenario naturally leads to a constant mean free path,
but a theoretical prediction for the more likely second
scenario is presently lacking.

Recently, several theoretical papers considered magne-
tothermal corrections (MTC) to the spin thermal conduc-
tivity, which should appear in a magnetic field due to a
coupling of the heat and magnetization currents [2,4–6]. In
this case, �s is given, instead of Eq. (3), by [6,20]

 �s �
Na
�

�
L2 �

L2
1

L0

�
: (6)

The second term in parentheses represents the MTC.
However, in Ref. [3] it was argued that MTC are absent
in macroscopic samples of real materials where the con-
servation of the total magnetization parallel to B is broken
by spin-orbit coupling, prohibiting a piling up of magneti-
zation. In Fig. 4(b), we show �s�B� calculated within the
relaxation time approximation for one temperature without
(solid line) and with (dashed line) MTC. According to
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FIG. 4. (a) Spin thermal conductivity as a function of B for
several T, calculated for CuPzN within a relaxation time ap-
proximation assuming a B- and momentum-independent mean
free path l. (b) Spin thermal conductivity at T � 0:66 K, calcu-
lated under various assumptions for the mean free path (see
legend), and taking into account magnetothermal corrections
(dashed line). Only the model with constant l is consistent
with the data.
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these calculations, MTC should completely destroy the
plateaulike feature at Bc, obviously at variance with the
experiment. Thus, our experiment provides strong evi-
dence against the existence of magnetothermal corrections
to the spin thermal conductivity in CuPzN.

The assumption of a constant mean free path agrees well
with the experiment at intermediate and high fields but
predicts a field-independent �s at low fields for T � J=kB.
The experiment, however, shows a low-field minimum of
�s�B� located approximately at �BB� kBT for low T, see
Fig. 3. This suggests strongly that the origin of this anoma-
lous behavior is related to the physics of the half-filled
band of Jordan-Wigner fermions. Only excitations in a
window of width kBT around the B � 0 Fermi surface
are able to relax their momentum to the lattice by umklapp
scattering. An explanation of the minimum might be pos-
sible along the following lines. The spin excitations which
dominate the thermal transport have a typical energy of
order kBT, those located directly at the Fermi surface with
energy 0 do not contribute. Therefore, umklapp scattering
is most effective, if the excitations with energy kBT (rather
than 0) have a momentum close to �=�2a�, where um-
klapp scattering is strongest, i.e., for �BB� kBT. Indeed,
if one assumes a scattering rate with a peak at k �
�=�2a�, the relaxation time approximation yields a mini-
mum in ��B� at the right position (not shown). An expo-
nentially strong maximum in ��B� has been theoretically
predicted for clean spin chains coupled to phonons in
Ref. [3] as a consequence of the existence of certain
approximate conservation laws. As our system is disorder
dominated, we do not believe that this mechanism is
directly applicable in the present situation. A minimum
in �s�B� was also predicted for a classical 1D Heisenberg
model in Ref. [7] but with a different T dependence. A full
theory of the low-field minimum should include the inter-
play of umklapp, impurity, and phonon scattering which is
currently under investigation.

According to Eqs. (3) and (5), at low T, �s�Bc; T� ’
�s�0; T�=2, see Fig. 4(b). Using this, we estimate the
absolute values of the zero-field spin contribution as
�s�0; T� � 2	��0; T� � ��Bc; T�
, which is shown in
Fig. 1. It is notable that �s / T2 implying a linear increase
of the mean free path with T as l � AT, with A � 1:0�
10�6 m=K for T & 1:5 K. This observation is in agree-
ment with theoretical predictions for weakly disordered
spin chains, where the linear T dependence arises from
the renormalization of the impurity potentials by Luttinger
liquid corrections, see, e.g., [22,23].

In summary, we have experimentally established the
magnetic contribution �m to the thermal conductivity of
the S � 1

2 chain compound copper pyrazine dinitrate. At
low temperatures, the field dependence of �m is charac-
terized by two features, one at high fields in the vicinity of
Bc and the other at low fields. The low-field feature re-
mains to be explained. The high-field feature is associated
to the spin thermal transport �s with a mean free path

surprisingly weakly dependent on both field and momen-
tum. No magnetothermal corrections to �s have been
identified in our experiment.
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A. K. Kolezhuk. This work was supported by the DFG
through SFB 608 and by the GIF.

[1] X. Zotos, J. Phys. Soc. Jpn. Suppl. 74, 173 (2005).
[2] K. Louis and C. Gros, Phys. Rev. B 67, 224410 (2003).
[3] E. Shimshoni, N. Andrei, and A. Rosch, Phys. Rev. B 68,

104401 (2003).
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