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Fractional and Integer Excitations in Quantum Antiferromagnetic Spin 1���2 Ladders
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Spectral densities are computed in unprecedented detail for quantum antiferromagnetic spin 1�2
two-leg ladders. These results were obtained due to a major methodical advance achieved by optimally
chosen unitary transformations. The approach is based on dressed integer excitations. Considerable
weight is found at high energies in the two-particle sector. Precursors of fractional spinon physics
occur supporting the conclusion that there is no necessity to resort to fractional excitations in order to
describe features at higher energies.
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Low-dimensional quantum antiferromagnets are of fun-
damental and enduring interest. One reason is that high-
temperature superconductivity depends crucially on the
interplay of charge carriers with the magnetic excitations
of a two-dimensional (2D) quantum antiferromagnet. A
vivid debate concerns the nature of the elementary excita-
tions of such an antiferromagnet. In terms of integer spin
waves (S � 1), no quantitative description is available of
the spectral densities at higher energies, where a significant
part of the spectral weight is located [1,2]. Therefore, it
has been suggested that fractional (S � 1�2 spinons) ex-
citations play an important role in 2D [3] supporting the
view that spinons and spin-charge separation are the ba-
sis of high-Tc superconductivity [4,5]. Spin ladders are
similar to 2D planes in the range of higher energies. The
importance of fractional excitations for the description of
high energy excitations in 2D would hence imply their im-
portance in spin ladders. Here we present a description
of the spectral densities in unprecedented detail in terms
of integer excitations. Our results show that the essential
point is not the fractionality of the elementary excitations
(“particles”) but the proper description of multiparticle
excitations.

Spectral densities provide information on the density of
elementary excitations, on their interaction, and on how
the particular excitation operator couples to them. For in-
stance, the dynamic structure factor as measured by in-
elastic neutron scattering couples to excitations with total
spin S � 1. Integer spin excitations induce a dominant
so-called quasiparticle peak in the dynamic structure fac-
tor [6]. If the integer S � 1 excitation decays into two
fractional S � 1�2 spinons, which move independently at
large distances, the quasiparticle peak vanishes and an im-
portant continuum appears at higher energies. The generic
example is found in spin chains for which spinons are the
elementary excitations [7].

We address two-leg spin ladders, i.e., two chains with in-
trachain coupling Jk coupled by an exchange coupling J�,

H �
X

i

�Jk�S1,iS1,i11 1 S2,iS2,i11� 1 J�S1,iS2,i� , (1)
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where i denotes the rung and 1, 2 the leg. As far as the
excitations at higher energies are concerned, spin ladders
constitute an intermediate system between 1D chains and
2D square lattices. Additionally, they occur in a multi-
tude of substances [8] comprising also superconducting
systems [9].

What is the most effective way to describe the exci-
tations? Two approaches are possible: (i) If the rung
coupling J� dominates in (1), i.e., H0 :� HjJk�0, the
excitations are local triplets on each rung (rung triplets).
When Jk is switched on they start to hop from rung to
rung. On increasing Jk the excitations become more and
more extended; they are rung triplets dressed by a mag-
netically polarized environment. (ii) If the rung coupling
J� is weak, it can be treated as perturbation which acts
on the elementary spinons in both chains. The rung cou-
pling binds two spinons on either chain thereby binding
two fractional S � 1�2 spinons to an integer S � 1 triplet.
The size of this bound object tends to infinity for J� ! 0.

For the value J� � Jk needed to compare with the
square lattice it is a priori unclear which picture is su-
perior. Note that we are not aiming at the question which
are the elementary excitations in the strict sense of the
word since this question concerns only the lowest ener-
gies. But we ask which excitations describe the physics at
all energies best. We show that approach (i) in terms of
integral dressed excitations works excellently. It provides
for the first time a quantitative description of the spectral
densities on all energy scales.

Also previous investigations in gapped 1D systems were
concerned with the nature of the excitations. For instance,
Sushkov and Kotov compared quantum antiferromag-
netism to quantum chromodynamics in the sense that the
S � 1�2 spins correspond to quarks and integer triplets to
(vector) mesons [10]. Zheng et al. described the decon-
finement of fractional spinons in dimerized, gapped spin
chains on decreasing dimerization in terms of integer
triplet excitations [11].

We construct a mapping by a continuous unitary trans-
formation (CUT) [12] of the Hamiltonian in (1) to an
effective Heff conserving the number of rung triplets:
© 2001 The American Physical Society 167204-1
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�H0, Heff� � 0. The ground state of Heff is the rung trip-
let vacuum [13]. In this way a tremendously complicated
many-body problem is reduced to a tractable few-body
problem. The mapping needs an auxiliary variable �
running between 0 and `. The Hamiltonian H��� is trans-
formed from � � 0 [H�0� � H] to � � ` [H�`� � Heff]
by

dH�d� � �h���,H���� , (2)

hi,j��� � sgn�Qi,i 2 Qj,j�Hi,j��� , (3)

where h defines the mapping. The matrix elements hi,j

and Hi,j are given in an eigenbasis of the number of rung
triplets Q � H0. Equations (2) and (3) constitute a gen-
eral, versatile prescription for any many-body problem to
obtain an effective model in terms of elementary excita-
tions, the number of which is counted by Q. The choice
(3) eliminates all parts of H changing the number of triplets
while retaining a certain simplicity in H��� for intermedi-
ate values of � [13,14], namely, that the number of rung
triplets is changed at most by 62. For details on the form
of Heff the reader is referred to Ref. [13]. To determine
response functions the physical observable under study
must be subject to the same unitary transformation (2) as
the Hamiltonian. Hence the CUTs are based on a very
clear-cut concept. Indeed, this concept rendered the com-
putation of bound states in higher order possible [15,16].
Conventional cluster techniques [17] allow equally to de-
termine the energies of bound states very accurately if they
are supplemented by similarity transformations substitut-
ing the unitary transformation [18,19]. A diagrammatic
approach with hard-core bosons [10,20] describes the ex-
citations equally in terms of triplets with qualitatively sim-
ilar results deviating, however, quantitatively for x / 0.5.

We were able to keep terms in H��� up to order 14 in
x :� Jk�J� for the kinetic energy (triplet hopping) and
up to order 13 for the triplet-triplet interaction. Observ-
ables were transformed up to order 10 allowing for the first
time to determine true multiparticle continua, i.e., spectral
densities, not only spectral weights, from a nonsimulation
approach. Our perturbative approach is supplemented by
standard extrapolations and optimizations of the resulting
series. It turned out that it is possible to determine the
spectral densities within about 5% accuracy for x � 1. For
lower values of x, the accuracy improves rapidly so that the
results at x 6 0.6 can be considered exact. The results are
not plagued by any finite size nor by any finite resolution
effects thereby providing for the first time predictions in
great detail.

For experimental relevance [21] and for comparison to
the square lattice we present results for Jk � J�. For
orientation Fig. 1 depicts the dispersion of the gapped ele-
mentary triplets [22–24], the resulting lower and upper
edge of the 2-triplet continuum, and the bound states in the
S � 0 and the S � 1 channel [10,18,19,21,25,26]. The
spectral densities I�v� are computed for the resolvent
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FIG. 1. Dispersions at Jk � J�. Elementary triplet (thin solid
line), lower and upper 2-triplet continuum edge (thin dashed
line), bound 2-triplet states with S � 0 (thick solid line), and
S � 1 (thick dashed line).

I�v� � 2p21��0jR�v 1 E0 2 H�21Rj0�retarded (4)

for various operators R connecting the ground state to ex-
cited states of different spin and parity. Odd (even) par-
ity with respect to reflection about the centerline of the
ladder implies an odd (even) number of rung triplets. In
Fig. 2 the distribution of spectral weight among the sec-
tors of a different number of rung triplets is depicted. For
local (i.e., k-integrated) excitations the relative intensities
Ir
n � In�Itot are plotted where the intensity In stands for

the v-integrated spectral densities I�v� in the sector of n
rung triplets. Recall that by our transformation the number
of rung triplets has become a good quantum number. The
total intensities Itot �

R`

01 I�v� dv �
P`

n�1 In are acces-
sible through the sum rule Itot � �0jR2j0� 2 �0jRj0�2.
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FIG. 2. Relative intensities I r
n of subsectors of a different num-

ber n of triplets and their sum (dashed line) for local excitations
Ri as a function of x � Jk�J�. Left panel S � 1: Ri � Sz

1,i ;
right panel S � 0: Ri � S1,iS1,i11.
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For x � 0, the excitation of a local rung triplet exhausts
the entire spectral weight for S � 1, i.e., I r

1�x � 0� � 1.
On increasing x the triplet becomes dressed and the quasi-
particle weight decreases. The sum of all relative intensi-
ties must be unity. Up to x � 1 our result (dashed lines)
deviates from the sum rule less than 3% giving evidence
for the reliability of the extrapolations. For larger x the
weight is overestimated increasingly. For x � 1 the I1 and
I2 contributions exhaust 74% 1 19% � 93% for S � 1
and 77% for S � 0 of the total weight. The neglect of
contributions from more triplets is hence well justified. A
description in terms of 1, 2, or 3 integer excitations works
perfectly without need to resort to spinons.

In Figs. 3 and 4 the k-resolved spectra are shown for
n � 1 (Fig. 3a) and n � 2 (other panels). In both spin
channels the 2-triplet spectral densities display important
and fine-structured continua bounded by square-root edges.
Generally the interaction shifts weight down to lower ener-
gies. For momenta not too far away from p, bound states
(grey lines in Figs. 3b and 4) leave the continua. These
bound states carry a large fraction of the 2-triplet weight.
The differences between Figs. 4a and 4b result from the
different parity of the two excitation operators at k � p
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FIG. 3. k-resolved spectral densities for operators indicated
(S � 1); d-peaks (grey lines) broadened for visualization by
J��20 and inserted in front of the unbroadened continua. The
bound state energies and the continuum edges are also shown
(dashed lines). (a) 1-triplet peak; (b) 2-triplet continuum (mul-
tiplied by 4 to show details) and bound state. The dark grey
line is a guide to the eye linking the midband square-root
singularities.
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with respect to reflection about the rung direction; see also
Ref. [21].

A very intriguing feature is the line of square-root sin-
gularities seen within the continuum in Figs. 3b (dark grey
line) and 4b. It increases from k � p�3 to k � p being
particularly clearly visible above k � p�2. Below this
line the larger part of the spectral weight is found. The
momentum dependence of these midband square-root sin-
gularities is strongly reminiscent of the upper edge of the
2-spinon continuum in single chains [7], to which it will
evolve for J� ! 0. The striking fact that a 2-triplet de-
scription is capable to yield 2-spinon features leads us to
the conjecture that the important point is not the fraction-
ality of the excitations but the correct description of multi-
particle excitations. Support for our conjecture is provided
by the computation of bound states of two spinons [27,28]
in terms of two triplets [11,25] in dimerized spin chains.

In Fig. 4 for small values of k a second upper peak
occurs which is due to density-of-states effects resulting
from the shallow dip that the 1-triplet dispersion (thin solid
line in Fig. 1) displays at k � 0. This local minimum in
the dispersion induces a Van Hove singularity which is
smeared out by the interaction to the additional peak. It
appears that the two parts of the dispersion from k � 0
to k � 0.4p and from k � p to k � p�2 act as rather
independent bands. With the help of this picture, the
rather sharp resonance at about k � p�2 in Fig. 4 is in-
terpreted as a bound state of the part of the dispersion
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FIG. 4. Same as in Fig. 3 for S � 0; (a),(b) 2-triplet con-
tinuum and bound state. In (b) continuum multiplied by 4 to
show details.
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for jkj [ �0, 0.4p�. It is not an absolutely stable state,
i.e., not a d peak of zero width, because it may still de-
cay into states with jkj [ �0.4p, p�. To be more spe-
cific, the dispersion for small values of k can be described
approximately by v�k� � J��1.9 2 0.1 cos�k�0.4�� (see
Fig. 1) so that the two-particle kinetic energy V�k, q� at
total momentum k and relative momentum q given by
V�k, q� � v�k�2 1 q� 1 v�k�2 2 q� becomes disper-
sionless for k � 0.4p: V�0.4p, q� � 3.8J� for values of
k�2 6 q in the range of the shallow dip. This implies that
the relative kinetic energy is negligible and interaction ef-
fects dominate. Indeed, Fig. 4 shows that the resonance is
shifted by an attractive interaction from 3.8J� to �3.5J�.

Our results predict many features in experiment. By
inelastic neutron scattering the 2-triplet S � 1 response
(Fig. 3b) is detectable if the momentum along the rungs
can be tuned to zero so that only the symmetric combina-
tion �Sz

1,i 1 Sz
2,i��2 leads to excitations. Then the 2-triplet

response (Fig. 3b) is separated clearly from the stronger
1-triplet response (Fig. 3a). To gain further insight in the
2-triplet interaction in the S � 1 channel we strongly sug-
gest such experiments.

Optical spectroscopy in terms of bimagnon-plus-phonon
absorption detects a weighted superposition of the curves
in Fig. 4 providing the first experimental verification of
the existence of the bound state in the S � 0 sector [21].
Raman spectroscopy measures in leading order [29] the
curves at k � 0 in Fig. 4 [30]. The theoretical results
agree very well with experiment [31] though some devia-
tions remain. These are most probably due to the general
presence of non-negligible cyclic exchange terms in the
cuprates [21,32–36].

Our findings on the distribution of spectral weight show
that large weight at high energies does not imply the ne-
cessity to resort to fractional excitations contrary to a fre-
quently used line of argument; see, e.g., Ref. [3]. Integer
excitations allow one to describe spectral densities of
spin ladders in great detail on all energy scales. It turns
out to be essential to describe multiparticle excitations
adequately. We find also that this task is tractable since
the sectors of low particle number dominate clearly.

We expect that a similar approach with integer excita-
tions will also allow one to describe undoped 2D cuprates
quantitatively. Continuous unitary transformations proved
to be a very powerful concept to deal with dressed excita-
tions. The above findings call for a renewed discussion of
the importance of fractional excitations in low-dimensional
strongly correlated electron systems such as doped and un-
doped high-Tc superconductors.

We acknowledge U. Löw and E. Müller-Hartmann for
helpful discussions, T. Kopp and T. Nunner for providing
numerical data prior to publication and the DFG for sup-
port in SP1073.
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