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Abstract. Low-dimensional quantum spin systems display fascinating excitation
spectra. In recent years, optical spectroscopy was shown to be a powerful tool
for the study of these spectra by means of phonon-assisted infrared absorption. We
discuss the results of antiferromagnetic S=1/2 cuprates with various topologies: the
spinon continuum observed in the weakly coupled chains of CaCu2O3, two-triplet
bound states and the continuum of the two-leg ladders in (La,Ca)14Cu24O41, and
the bimagnon-plus-phonon spectrum of the bilayer YBa2Cu3O6, an undoped parent
compound of the 2D high-Tc cuprates. Various theoretical approaches (dynamical
DMRG, continuous unitary transformations (CUT), and spin-wave theory) are used
for a quantitative analysis. Particular attention is paid to the role of the cyclic four-
spin exchange.

The dawn of phonon-assisted infrared absorption of magnetic excitations
dates back to 1959, when Newman and Chrenko [1] observed an infrared
absorption band at 0.24 eV in the classic three-dimensional (3D) S=1 antifer-
romagnet NiO. A connection with the antiferromagnetic order was suggested
on the basis of the observed temperature dependence. In 1964 Mizuno and
Koide [2] proposed that this absorption band reflects the simultaneous excita-
tion of two magnons and one phonon. At that time, the spin dynamics were
analyzed only qualitatively on a mean-field level. In 1966, phonon-assisted
two-magnon absorption was also reported in cubic KNiF3 [3], which still is
considered to be the best realization of the 3D S=1 Heisenberg model [4].
Only in 1995 Lorenzana and Sawatzky [5] rediscovered this idea and pro-
posed that the mid-infrared absorption features observed in the undoped
parent compounds of the high-Tc cuprates [6] – the best realization of the
2D S=1/2 square-lattice Heisenberg model – had to be explained in terms of
bimagnon-plus-phonon absorption. On the basis of spin-wave theory they per-
formed the first quantitative analysis and obtained an excellent description
of the dominant peak [5]. The spectral weight at higher energies (see below,
Fig. 13) was tentatively ascribed to higher-order multi-magnon contributions.
Due to the reduced dimensionality and the small spin value S=1/2, quantum
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effects should be pronounced. Therefore the nature of the spin excitations
in the 2D cuprates is still controversial, in particular at high energies [7–12].
The detailed information on the spectral density offered by the infrared data
should allow to clarify this point, but it still poses a challenge to theory. The
problems in the description of the line shape of the 2D cuprates appear par-
ticularly conspicuous in comparison with the excellent description obtained
(a) in spin-wave theory for the isostructural S=1 compound La2NiO4 [5,13]
and (b) in a two-spinon analysis of the S=1/2 chain Sr2CuO3 [14,15]. In 1D
good agreement is obtained because quantum fluctuations are fully included,
and in the 2D S=1 nickelate because fluctuations beyond spin-wave theory
are small. Here, we try to shed some light on this issue by comparing S=1/2
cuprate compounds with different topologies: weakly coupled chains, two-leg
ladders and 2D layers. Before, we will discuss bimagnon-plus-phonon absorp-
tion in general, the experimental determination of the magnetic contribution
to the optical conductivity σ(ω) and in particular the magnetic excitations
of S=1/2 two-leg spin ladders.

1 Bimagnon-Plus-Phonon Absorption

This technique allows to study the spin–spin correlation function via a mea-
surement of the dipole–dipole correlation function, i.e., the optical conduc-
tivity σ(ω). Since spin is conserved, σ(ω) reflects S=0 excitations (neglecting
spin–orbit coupling), e.g., the excitation of two S=1 magnons with total spin
Stot=0 or the appropriate combination of two elementary triplets (henceforth
called triplons [16]) or two spinons. However, in the cuprates direct absorp-
tion of, e.g., two magnons is not infrared active due to inversion symmetry.
We can effectively avoid this selection rule by simultaneously exciting a Cu-O
bond-stretching phonon that breaks the symmetry. Hence, the lowest order
infrared-active magnetic absorption is a two-magnon-plus-phonon process.
The phonon participation was verified experimentally by the observation of
a frequency shift induced by oxygen isotope substitution in YBa2Cu3O6 [7].

The quantitative analysis [5] starts from a three-band Peierls–Hubbard
model in the presence of an electric field E. The dominant contribution to
the dipole moment arises from displacements of the oxygen ions (only Einstein
phonons are considered). These modulate the hopping matrix elements and
the on-site energies, whereas the electric field contributes only to the on-site
energies. In perturbation theory a low-energy Hamiltonian is derived, in which
the relevant term corresponds to a nearest-neighbor Heisenberg Hamiltonian,
where the exchange coupling Ji,δ depends on the electric field E and on the
displacements of the oxygen ions uj

H =
∑

i,δ

Ji,δ(E, {uj})SiSi+δ . (1)

Here, i labels the Cu sites and δ runs over nearest-neighbor sites. We ex-
pand J(E, u) to order ∂2J/∂E∂u which entails the coupling of a photon
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to a phonon and two neighboring spins. The dipole moment associated with
two-magnon-plus-phonon absorption then results from the Fourier transform
of the product of neighboring spin operators weighted by a momentum-
dependent vertex function γ(k), which corresponds to the Fourier transform
of ∂2J/∂E∂u. To zeroth order in the magnon–phonon coupling, the magnetic
system and the phonon system can be decoupled. The role of the phonon is
thus reduced to (a) breaking the symmetry, (b) a shift of the energy scale
by the phonon energy ωph, and (c) a contribution kph to the total momen-
tum ktot. Since kph runs over the entire Brillouin zone, the selection rule
0 = ktot = kmag + kph tells us that the magnetic excitations have to be inte-
grated over all momenta, where the form factor is given by |γ(k)|2 ≡ fph(k).

2 Experimental Determination of the Magnetic
Contribution to σ(ω)

Since the considered bimagnon-plus-phonon absorption is a higher-order pro-
cess, one expects only a weak dipole moment or a small spectral weight in
σ(ω). This can be determined very accurately by measuring both the trans-
mittance T (ω) and the reflectivity R(ω). The optical conductivity σ(ω) =
nκω/2π results from inverting [17,18]

R(ω) =
(n − 1)2 + κ2

(n + 1)2 + κ2
, T (ω) =

(1 − R)2Φ
1 − (RΦ)2

, (2)

Φ(ω) = exp(−2ωκd/c) = exp(−αd) , (3)

where n denotes the index of refraction, κ the extinction coefficient, α the
absorption coefficient, c the velocity of light and d the thickness of the trans-
mittance sample [R(ω) denotes the single bounce reflectivity and hence needs
to be measured on a thick (“semi-infinite”), opaque sample]. These equations
are obtained for a sample with parallel surfaces by adding up the intensities
of all multiply reflected beams incoherently, i.e., by neglecting interference
effects. Experimentally, this condition is realized either if the sample surfaces
are not perfectly parallel or by smoothing out the Fabry–Perot interference
fringes by means of Fourier filtering. In case of weak absorption κ � n, the
reflectivity is entirely determined by n and not suitable to derive κ by using
a Kramers–Kronig transformation. At the same time, κ can be determined
very accurately from the transmittance. Since T (ω) depends exponentially
on κ · d, the appropriate choice of d is essential.

As an example we plot in Fig. 1 the data of the two-leg S=1/2 ladder
LaxCa14−xCu24O41 [19] (see also Sect. 3). The top panel shows the reflectivity
measured on a 0.8mm thick sample (x=4) for two different polarizations of
the electrical field, namely, parallel to the rungs and parallel to the legs.
The feature at about 600–700cm−1 corresponds to the Cu-O bond-stretching
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Fig. 1. Mid-infrared reflec-
tivity and transmittance of
LaxCa14−xCu24O41 at T=4K
for polarization parallel to the
rungs and to the legs, re-
spectively. (Top panel) Re-
flectivity for x=4. (Bottom
panel) Transmittance of two
single crystals with thickness
d=28 µm (solid lines) and
6 µm (dashed lines)

phonon mode. At higher frequencies, the reflectivity is featureless, which is
characteristic for an insulator in the regime of weak absorption below the
gap. The different absolute values of the two polarization directions reflect
the difference in n, namely, na ≈ 2.3 and nc ≈ 2.6.

The bottom panel of Fig. 1 shows T (ω) measured on thin single crystals
with x=5.2 for two different thicknesses, d=6 µm and 28 µm. Fabry–Perot
interference fringes have been removed by Fourier filtering. In contrast to
the reflectivity, the transmittance reveals the weak absorption features we
are looking for, in this case in the range from about 2000 to 6000 cm−1. The
spectra can be divided into three different regimes. The absorption below
≈ 1300 cm−1 can be attributed to phonons and multi-phonon bands. The
strong absorption at high frequencies is due to an electronic background,
which has to be identified with the onset of charge-transfer excitations or with
the absorption of localized carriers (located in the CuO2 chains but not in the
ladders [20]). In order to analyze the magnetic excitations in the intermediate
frequency range, they have to be separated from the background, which thus
needs to be known precisely. This requires the measurement of a thin sample,
which still is transparent at high frequencies, whereas the weaker magnetic
features can be determined more precisely from the data of the thicker sample
(see bottom panel of Fig. 1).

The spectrum of the optical conductivity σ(ω) is shown in Fig. 2 for po-
larization parallel to the legs (top) and parallel to the rungs (middle). In the
latter case, the features between 2000 and 6000 cm−1 are clearly separated
from the high-frequency background, which can be determined unambigu-
ously by a Gaussian fit for ω>7000 cm−1 (dashed line in the middle panel of
Fig. 2, see also [17]). For polarization parallel to the legs, the stronger absorp-
tion complicates the determination of the background considerably [21]. The
data clearly reveal a comparably strong absorption peak at about 6000 cm−1,
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Fig. 2. Optical conductivity σ(ω)
of La5.2Ca8.8Cu24O41 at T=4K
(solid lines) and fits of the high-
frequency background (dashed
lines). (Top panel) Polarization
parallel to the legs. The total fit
(long-dashed line) is the sum of
a Gaussian and of a quadratic
part. (Middle panel) Polariza-
tion parallel to the rungs. (Bot-
tom panel) Magnetic contribu-
tion to σ(ω) resulting after sub-
traction of the background

which can already be seen in T (ω) of the 6 µm sample (Fig. 1). We obtained
an excellent fit by using a Gaussian line shape for this peak plus a quadratic
frequency dependence of the absorption at higher frequencies (dashed lines in
Fig. 2). Subtracting the background fits we obtain the magnetic contribution
to σ(ω) (bottom panel of Fig. 2).

3 Magnetic Excitations of Two-Leg Spin-1/2 Ladders

Two-leg spin-1/2 ladders show fascinating properties such as a spin-liquid
ground state with a spin gap to the lowest excited state and superconductiv-
ity under pressure upon hole doping [22]. This possibility of hole doping has
placed the so-called telephone-number compounds A14Cu24O41 in the focus
of attention. Here, we are interested in the magnetic properties of nominally
undoped samples, i.e. Cu2+, which corresponds to LaxCa14−xCu24O41 with
x=6. Single-phase crystals could only be synthesized for x ≤ 5.2 [23]. How-
ever, polarized x-ray absorption data [20] show that at least for x > 2 the
holes are located within the second structural unit of these compounds, the
CuO2 chains. Thus, we consider the ladders to be undoped [17,19].
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The minimal model for S=1/2 cuprate ladders consists of an antiferro-
magnetic Heisenberg Hamiltonian plus an additional cyclic exchange term
Hcyc [24]

H = J‖
∑

i

(Si,lSi+1,l + Si,rSi+1,r) + J⊥
∑

i

Si,lSi,r + Hcyc , (4)

where J⊥ and J‖ denote the rung and leg couplings, i refers to the rungs,
and l, r label the two legs. The cyclic exchange term1 corresponds to the
cyclic permutation of four spins on a plaquette and emerges as the dominant
correction to the nearest-neighbor Heisenberg model in an expansion of the
three-band Hubbard model [28]. Rewriting the Hamiltonian in terms of rung
singlets and rung triplets, one can easily see that the strongest effect of the
cyclic exchange coupling Jcyc is a renormalization of the other terms in the
Hamiltonian, causing a redshift of the entire one-triplon dispersion (see Fig.
3a) [24]. Correspondingly, also the lower edge of the two-triplon continuum
shifts to lower energies (open symbols in Fig. 3b). Below the continuum,

1 Note that the formulations of Hcyc used in the DMRG and in the CUT calcula-
tions are slightly different [24,25]. The resulting Hamiltonian is identical except
for couplings along the diagonals if J⊥ and J‖ are suitably redefined [26].
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there exists an S=0 two-triplon bound state (full symbols in Fig. 3b), which
results from an attractive interaction between two triplons. The only qual-
itatively new contribution of the cyclic exchange is a competing repulsive
interaction between triplets on neighboring rungs. Increasing Jcyc thus re-
duces the binding energy of the two-triplon bound state and also the width
of the bound-state dispersion.

The existence of two-triplon bound states in undoped two-leg ladders was
predicted theoretically by a number of groups [30–35]. Jurecka and Brenig [33]
predicted that the S=0 bound state dominates the optical conductivity spec-
trum for small values of J‖/J⊥. The evolution of σ(ω) for 0.2 ≤ J‖/J⊥ ≤ 1.15
was discussed in [17]. The existence of the S=0 two-triplon bound state was
confirmed experimentally by measuring σ(ω) of (La,Ca)14Cu24O41 [19]. As
shown in Fig. 3b, the bound state shows a maximum at k ≈ π/2 and a mini-
mum at the Brillouin zone boundary. Both give rise to van Hove singularities
in the density of states which cause peaks in σ(ω). Knowledge of these two
peak frequencies and of the spin gap is sufficient to determine the three cou-
pling constants J‖, J⊥ and Jcyc (see Fig. 4). For La5.2Ca8.8Cu24O41 we find
J‖/J⊥≈ 1.25–1.35, Jcyc/J⊥≈ 0.20–0.27, and J⊥≈ 950–1100cm−1 [24]. Inclu-
sion of a sizable Jcyc is thus indeed necessary for a consistent description of
the experimental data. However, the parameters were determined from three
discrete energies. A comparison of the entire spectral density calculated for
this parameter set with the experimentally determined line shape of σ(ω)
provides a thorough test whether this minimal model captures all relevant
properties. In fact, the agreement between theory and experiment is excel-
lent (see Fig. 5). The two van Hove singularities of the bound state cause the
two peaks at about 2140cm−1 and 2780cm−1 for leg polarization. For po-
larization parallel to the rungs, the lower bound state is suppressed due to a
selection rule [19], and the upper bound-state peak is about 60 cm−1 higher,
which reflects the different frequencies of the phonons involved in the two po-
larization directions [36]. The continuum above ≈ 3000 cm−1 is reproduced
almost perfectly, in particular for the rung polarization, which experimentally
can be identified unambiguously and with high precision. Due to the com-
plications arising from the background subtraction for polarization parallel
to the legs (see Sect. 2), the small deviations within the continuum range
in the top panel of Fig. 5 are certainly within the experimental accuracy.
In this polarization, σ(ω) contains two contributions, where the two legs are
excited in-phase (py =0) or out-of-phase (py =π). The two-triplon weight and
thus also the bound state is contained in the in-phase contribution, whereas
the continuum is dominated by the out-of-phase mode, which reflects the
excitation of three (or more) triplons.

In [17,19] we have compared σ(ω) of (La,Ca)14Cu24O41 with the results of
two further theoretical approaches, namely, Jordan–Wigner fermions [37] and
continuous unitary transformations (CUT). There, the cyclic exchange was
not included. Here, we report for the first time on CUT results for the spectral
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densities including four-spin interactions. In the CUT approach, the Hamil-
tonian H is mapped to an effective Hamiltonian Heff which conserves the
number of rung triplons [38,39]. The ground state of Heff is the rung-triplon
vacuum. The CUT is implemented perturbatively in J‖/J⊥ and Jcyc/J⊥. The
resulting plain series are represented in terms of the variable 1−∆s/(J‖+J⊥)
[40,41], where ∆s is the one-triplon gap which is proportional to the inverse
correlation length of the system. Then standard Padé extrapolations yield
reliable results up to J‖/J⊥ ≈ 1–1.5 depending on the value of Jcyc/J⊥.

The CUT result for the two-triplon contribution to σ(ω) is given in Fig.
6 for J‖/J⊥=1.25, Jcyc/J⊥=0.18 and J⊥=1060 cm−1 [26]. For the compar-
ison with the experimental data one has to bear in mind that the spectral
weight of three and more triplons is missing (see Fig. 10 below; note that the
rung polarization contains only excitations of an even number of triplons).
Roughly speaking, the two-triplon contribution calculated by CUT is equiv-
alent to the in-phase contribution of the DMRG result (for leg polarization).
Qualitatively, the spectra agree very well with each other. In principle no
extra broadening is needed in CUT, thus sharp features are better resolved.
However, CUT slightly underestimates the splitting of the two peaks of the
bound state and also the position of the continuum in the rung polarization
(the frequency of the maximum is too low by about 10%).
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The optical conductivity σ(ω) reflects a weighted superposition of the
momentum-resolved spectral densities with S=0 (see above). The k-resolved
CUT data for the two-triplon contribution are shown in Fig. 7. In both panels
the spectral densities are dominated by the bound state, which leaves the
continuum at k ≈ 0.3π. In both polarizations, the continua show interesting
structures. For 0 ≤ k ≤ π/2 there is a dominant ridge which develops from
the two-triplon Raman peak at k=0. For large k this ridge moves to higher
energies, getting an almost anti-bound state at k=π. In the rung polarization,
there is a pronounced feature concentrated around k = π/2 below the ridge.
This feature survives the k integration as a small shoulder in σ(ω), which
may correspond to the experimentally observed peak at about 3200 cm−1

(see bottom panel of Fig. 6). The strength of this feature depends on the
weight factor or phonon form factor fph. To lowest order (4th order in the
Cu-O hopping tpd), the dominant contribution to f leg

ph comes from the in-
phase and the out-of-phase stretching modes of the oxygen ions on the legs,
whereas for f rung

ph the out-of-phase stretching mode and the vibration of the
oxygen ion on the rung are taken into account (see also [36])

f leg
ph = 8 sin4(

px

2
) , f rung

ph = 8 sin2(
px

2
) + 4 . (5)
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The effect of different form factors on the line shape of σ(ω) is visualized in
Figs. 8 and 9. The small shoulder discussed above at about 2.3 J⊥ is more
pronounced for form factors which suppress the dominant ridge at small k.
Obviously, both the spectral weight and the line shape depend sensitively on
the form factor.

Finally, we discuss the influence of Jcyc on the spectral weight and the line
shape of σ(ω). The relative spectral weights Irel

n of the n-triplon contributions
to the S=0 spectral density calculated by CUT for leg polarization are plotted
in Fig. 10 for three different values of Jcyc/J‖ (see [39] for the S=1 channel).
For J‖=0 the system consists of local rung singlets which can only be excited
to local rung triplets. Due to the local nature, the S=0 weight is exhausted
entirely by the two-triplon part, Irel

2 = 1. For finite J‖ the two-triplon spec-
tral weight is reduced and the multi-triplon weight is enhanced. In σ(ω) this
translates into a spectral weight transfer from low energies to high energies,
i.e., to an increase of the high-energy continuum weight. An additional sup-
pression of the leading two-triplon part takes place upon increasing Jcyc (see
Fig. 10). This reflects the fact that the rung-singlet phase is destabilized by
Jcyc, resulting in a quantum phase transition to the topologically different
staggered dimer phase [41–44]. For J‖/J⊥ = 1.25 we find a reduction from
Irel
2 = 0.64 for Jcyc = 0 to Irel

2 = 0.50 for Jcyc/J‖ = 0.2, i.e., the two-triplon
contribution looses about 20% of its weight. The sum of Irel

2 , Irel
3 , and Irel

4 is
very close to 1 at least for J‖/J⊥ ≤ 1.5 and Jcyc/J‖ ≤ 0.2, and Irel

4 remains
small in this parameter range. It will thus be sufficient to determine the two-
and three-triplon contributions in order to obtain a reliable description of the
line shape of σ(ω).

The influence of Jcyc on the line shape of the two-triplon contribution to
σ(ω) is visualized in Figs. 11 and 12 for J‖/J⊥=1.0 and 1.3. The spectra fol-
low the trends apparent in Fig. 3b. With increasing Jcyc, the dispersion of the
bound state and thus also the splitting of the two sharp bound-state peaks in
σ(ω) are significantly reduced. Furthermore, an increase of Jcyc causes a red-
shift of the entire spectrum. Additionally, Jcyc gives rise to new fine structure
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in the spectral densities. For instance for J‖/J⊥=1.3 and Jcyc/J⊥=0.2 there
appears a shoulder between the two bound-state peaks in the leg polarization
(see lower left panel of Fig. 11). This can be traced back to a matrix-element
effect. The momentum-resolved spectral densities plotted in Fig. 7 reveal that
the spectral weight of the two-triplon bound state shows a maximum for a
value of k close to but not identical with k = π. After the integration over
k the van Hove singularities dominate the spectra, but the maximum still
survives as a clear peak. Pronounced effects of Jcyc can also be observed in
the continua, where the tendency towards an anti-bound state is enhanced
by Jcyc.

4 From Weakly Coupled Chains to 2D Layers

In Fig. 13, we compare the magnetic contribution to σ(ω) of the undoped
S=1/2 two-leg ladder (La,Ca)14Cu24O41 [19] discussed in the previous sec-
tions with the spectra of the 2D bilayer YBa2Cu3O6 [7] (bottom panel) and
of CaCu2O3 (top panel) [45]. The latter compound was thought to represent
a two-leg ladder with J‖ � J⊥, but it rather has to be viewed as a 3D system
of weakly coupled chains [45,46]. In order to facilitate the comparison, the
spectra are shifted by the respective phonon frequency ωph, and the frequency
is plotted on the scale of the exchange coupling J (where J reflects the cou-
pling along the chains, along the legs and within the layers, respectively).
The values of J were determined by comparison with theoretical results. The
apparent trend in Fig. 13 is that the spectral weight is shifted to higher en-
ergies on going from 1D chains via ladders to 2D layers. This reflects the
increase of the number of nearest-neighbor spins ν from 2 in the chain to 3
in the ladder to 4 in a 2D layer. At the same time, the spectral weight is
smeared out over a broader frequency range.

In the 2D cuprates, the high-energy continuum at about 4J and above
remains puzzling [7,8]. The first question one has to address is which part
of the weight reflects magnetic excitations and which part has to be sub-
tracted as a background as in the ladders. On the scale of J used in Fig.
13, the very steep onset of charge-transfer excitations occurs only at about
13 J in YBa2Cu3O6 [7], and it is rather unlikely that this causes a signifi-
cant contribution in the range plotted in Fig. 13. At first one might expect
that the unexplained spectral weight above the two-magnon part reflects the
multi-magnon contribution. However, the high-energy weight is missing also
in exact diagonalization results for the square-lattice Heisenberg model [47].
One may speculate whether this failure is due to the still rather small cluster
sizes. Lorenzana et al. claimed that inclusion of a cyclic exchange term offers
a remedy to this problem [47]. We have shown above that Jcyc enhances the
high-energy weight also in the ladders (see Fig. 10), but only by about 20%.
Since Jcyc/J is very similar in the ladders and in the 2D cuprates [47–49],
it seems unlikely that Jcyc alone can explain the large discrepancy shown
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Fig. 13. Evolution of the optical conductivity from weakly coupled chains via two-
leg ladders to 2D layers at T = 4K. (Top) σ(ω) of CaCu2O3 for E ‖ b (solid line),
DMRG result (circles) for J‖/J⊥ = 5 and J‖ = 1300 cm−1 [45]. (Middle) σ(ω)
of La5.2Ca8.8Cu24O41 for E ‖ c (solid), DMRG data (symbols) for J‖/J⊥ = 1.3,
Jcyc/J⊥ = 0.2 and J‖ = 1000 cm−1 (see Fig. 5) [24]. (Bottom) σ(ω) of the 2D
bilayer YBa2Cu3O6 for E ‖ a (solid). In a bilayer, the two-magnon contribution
from spin-wave theory (dashed) contains an in-plane part (dotted) and an inter-
plane part (dash-dotted). Here, the in-plane exchange is J = 780 cm−1 and the
inter-plane exchange amounts to J12/J = 0.1 [7]. The two-magnon peak corresponds
to 2.88J for J12/J = 0.1, and to 2.73J for J12 = 0

in the bottom panel of Fig. 13. Note that in the ladders the discrepancy
between the full spectrum and the two-triplon contribution is very similar
to the discrepancy observed in the 2D case (see also Fig. 6), which indicates
that multi-particle excitations are relevant. Interestingly, all three compounds
show a contribution from an incoherent continuum at about 2νSJ , where ν
denotes the number of nearest-neighbor spins. The position of the contin-
uum thus may reflect the rather local nature of the incoherent excitations.
However, in 2D a quantitative description of the total weight still poses a
demanding challenge for future research.
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19. M. Windt, M. Grüninger, T. Nunner, C. Knetter, K.P. Schmidt, G.S. Uhrig,

T. Kopp, A. Freimuth, U. Ammerahl, B. Büchner, A. Revcolevschi: Phys. Rev.
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45. E. Benckiser, M. Grüninger, T. Nunner, T. Kopp, C. Sekar, G. Krabbes: to be

published.
46. T.K. Kim, H. Rosner, S.-L. Drechsler, Z. Hu, C. Sekar, G. Krabbes, J. Malek,

M. Knupfer, J. Fink, H. Eschrig: Phys. Rev. B 67, 024516 (2003)
47. J. Lorenzana, J. Eroles, S. Sorella: Phys. Rev. Lett. 83, 5122 (1999)
48. R. Coldea, S.M. Hayden, G. Aeppli, T.G. Perring, C.D. Frost, T.E. Mason,

S.-W. Cheong, Z. Fisk: Phys. Rev. Lett. 86, 5377 (2001)
49. A.A. Katanin, A.P. Kampf: Phys. Rev. B 66, 100403 (2002)


