Thermal Expansion of a La_{1.87}Sr_{0.13}CuO₄ Single Crystal at T_c in High Magnetic Fields

Th. Auweiler^a, Th. Lorenz^a, W. Schlabitz^a, H. Kierspel^a, B. Büchner^a, A. Freimuth^a, H. Micklitz^a, I. Tanaka^b, and H. Kojima^b

^a II. Phys. Institut, Universität zu Köln, 50937 Köln, Germany

We present high-resolution dilatometry measurements of a La_{1.87}Sr_{0.13}CuO₄-single crystal parallel and perpendicular to the CuO₂-planes in magnetic fields up to 14 Tesla. We find a strong suppression of the thermal expansion anomalies for magnetic fields parallel to the c-axis. In contrast, a magnetic field perpendicular to the c-axis affects the anomalies only weakly.

The thermal expansion α of La_{1.87}Sr_{0.13}CuO₄ (LSCO) shows pronounced and anisotropic anomalies at T_c in zero magnetic field [1]. From a study of the field dependence of these anomalies one may obtain information on the suppression of the superconducting transition in a magnetic field and on the influence of superconducting fluctuations. Moreover, it should be possible to decouple the superconducting anomalies from additional structural anomalies, which are suggested to occur at T_c in high temperature superconductors (HTSC) [2].

In this paper we present the first study of the field dependence (up to 14 Tesla) of the thermal expansion on a single crystal of LSCO.

The single crystal used in our experiments was grown by the traveling solvent floating zone method [3]. The superconducting transition temperature in zero field is $T_c(0) \simeq 32.5(5)$ K as determined by specific heat measurement [1]. The crystal surfaces are parallel to (001) or (110) planes in the orthorhombic notation. Thermal expansion $\alpha_{a,b}$ along the ab-direction and α_c along the c-direction was measured in high magnetic fields with a capacitance dilatometer [4]. We emphasize that the magnetic field was always applied well above $T_c(0)$ to avoid magnetostrictive effects, which are known to be large in HTSC-single crystals [5].

In Fig. 1 we show $\alpha_{a,b}$ and α_c as a function of temperature measured for the magnetic field in the c-direction. One observes at first glance that

the zero field anomalies at T_c are rapidly suppressed with increasing magnetic field. Apparently, from α_c one finds that there are no anomalies for B > 7T. Note that the upper critical field for $B \parallel c$ is order $H_{c2} \approx 30T$ [6].

Anomalies $\delta\alpha$ can be obtained from the data of fig.1 by subtracting a "normal" contribution extrapolated from the behavior of α at temperatures far below and above T_c . Notably, the "normal" contribution obtained in this way aggrees well with the measured α_c for B>7T, which indicates that the anomalies of α_c are indeed completly suppressed in high fields. (Note that $\delta\alpha$ as defined above is not the mean field jump of α at T_c .)

The anomalies $\delta \alpha_{a,b}$ are shown in fig.2. In the inset of fig.2 we show the field dependence of $\Delta L/L = \int \delta \alpha dT$ normalized to its maximum value as extracted from α_c and $\alpha_{a,b}$. $\Delta L/L$ extrapolates to zero for $B \approx 7T$.

We can obtain $T_c(B)$ from $\delta \alpha$ by an area conserving construction. We find that T_c is only weakly suppressed with increasing field (for B=4T we find a suppression of about 4K).

We have also performed measurements of $\alpha_{a,b}$ for magnetic fields along the ab-direction and for magnetic fields tilted with respect to the crystal axes. These results will be presented in another publication. We note here that $\alpha_{a,b}$ measured for $H = 14T \parallel ab$ is equal to $\alpha_{a,b}$ measured for $H = 0.5T \parallel c$. From this we can extract the anisotropy parameter $\Gamma = \xi_{a,b}/\xi_c \approx 28$. For ma-

b Institute for Inorganic Synthesis, Yamanashi University, Kofu 4000, Japan

Figure 1. Thermal expansion vs. temperature along a,b-axis (upper panel) and c-axis (lower panel) in various magnetic fields.

gnetic fields tilted with respect to the crystal axes the magnetic field component perpendicular to the CuO_2 -planes dominates the anomalies of α .

The most striking result of our experiments is the rapid suppression of $\delta\alpha$ with increasing magnetic field and the complete absence of anomalies for B>7T. From the Ehrenfest relation $\Delta\alpha_i \propto \Delta c_p(dT_c/dp_i)$ this can be related to a strong suppression of the specific heat anomaly Δc_p with increasing magnetic field. Such behavior is indeed found in the specific heat of Y-Ba-Cu-O and Bi-based superconductors for $B \parallel c$ [7].

Figure 2. $\delta \alpha_{a,b}$ vs. temperature. Inset: $\Delta L/L$ as extracted from $\delta \alpha_{a,b}$ (open circles) and $\delta \alpha_c$ (crosses) vs. magnetic field. (see text.)

However, the suppression of Δc_p is not complete even in the largest fields studied. Therefore, one may speculate on an additional cause for the complete suppression of $\delta \alpha$, e.g. a strong field dependence of dT_c/dp . High-field measurements of the specific heat of LSCO are in progress in order to check this point.

We finally point out that the suppression of $\delta\alpha$ with increasing magnetic field excludes the existence of an additional structural transition at T_c [2], since the latter should be independent of the magnetic field.

This work was supported by the Deutsche Forschungsgemeinschaft through SFB 341.

REFERENCES

- M.Braden et al., Phys.Rev B 47 (1993) 12288
- 2. M.Lang et al., Phys.Rev.Lett 69 (1992) 482
- 3. I.Tanaka, H.Kojima, Nature 337 (1989) 21
- 4. Th. Auweiler et al., to be published
- 5. A.Schmidt et al., Physica B 194 (1994) 1787
- 6. P.Ernst et al., Ann. Physik 2 (1993) 120
- 7. A.Junod et al., Physica C 211 (1993) 304; H.Kierspel et al., to be published