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eII. Physikalisches Institut, RWTH-Aachen, 52056 Aachen, Germany

Abstract

Magnetic excitations in two-leg S ¼ 1=2 ladders are studied both experimentally and theoretically. Experimentally, we report

on the reflectivity, the transmittance and the optical conductivity sðvÞ of undoped LaxCa142xCu24O41 for x ¼ 4; 5, and 5.2.

Using two different theoretical approaches (Jordan–Wigner fermions and perturbation theory), we calculate the dispersion of

the elementary triplets, the optical conductivity and the momentum-resolved spectral density of two-triplet excitations for

0:2 # Jk=J’ # 1:2: We discuss phonon-assisted two-triplet absorption, the existence of two-triplet bound states, the two-triplet

continuum, and the size of the exchange parameters. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Low-dimensional quantum antiferromagnets offer a

diverse view on quantum fluctuations at work. Particular

interest has focused on two-leg spin 1/2 ladders, which show

a spin liquid ground state with a spin gap to the lowest

excited state, and superconductivity under pressure upon

hole doping [1,2]. In undoped two-leg ladders the existence

of two-‘magnon’ (or more precisely: two-triplet) bound

states was predicted theoretically by a number of groups

[3–10]. Recently, we have reported on the observation of a

two-triplet bound state with Stot ¼ 0 in the optical

conductivity spectrum of (La,Ca)14Cu24O41 [12], a com-

pound with stacked layers of Cu2O3 ladders and of CuO2

chains. Concerning the peak positions and the line shape of

the bound states, good agreement was achieved between

experiment and two different theoretical approaches,

namely, Jordan–Wigner fermions and perturbation expan-

sion using unitary transformations [12]. Using the second

approach, some of us have discussed the momentum-

resolved spectral densities and the relationship between

fractional (spinons) and integer excitations (triplets) in two-

leg spin 1/2 ladders [13]. In these proceedings, we discuss

recent experimental and theoretical progress that we have

achieved.

2. Experiment

Single crystals of LaxCa142xCu24O41 were grown by the

traveling solvent floating zone method [14,15]. These so

called telephone number compounds have attracted particular

interest due to the possibility of hole doping. Here, we are

interested in the magnetic properties of nominally undoped

samples, i.e. Cu2þ, which correspond to x ¼ 6: Single phase

crystals could only be synthesized for x # 5:2 [14,15]. The

samples studied here with x ¼ 5:2; 5, and 4 on average

contain n ¼ 0:8=24; 1/24 and 2/24 holes per Cu, respectively.

However, X-ray absorption data show that for these low

doping levels the holes are located within the chains [15].

Thus, we consider the ladders to be undoped [12].

In order to determine the optical conductivity sðvÞ we

have measured both transmittance and reflectivity data

between 500 and 12,000 cm21 on a Fourier spectrometer.
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The transmittance TðvÞ and the reflectivity RðvÞ were

calibrated against a reference aperture and a gold mirror,

respectively. The optical conductivity sðvÞ ¼ nkv=2p was

determined by inverting [17,18]

RðvÞ ¼ ½ðn 2 1Þ2 þ k2�=½ðn þ 1Þ2 þ k2�; ð1Þ

TðvÞ ¼ ½ð1 2 RÞ2F�=½1 2 ðRFÞ2�; ð2Þ

FðvÞ ¼ expð22vkd=cÞ ¼ expð2adÞ; ð3Þ

where n denotes the index of refraction, k the extinction

coefficient, a the absorption coefficient, c the velocity of

light and d the thickness of the transmittance sample [RðvÞ

denotes the single bounce reflectivity and hence needs to be

measured on a thick (‘semi-infinite’), opaque sample]. Eq.

(2) is obtained for a sample with parallel surfaces by adding

up the intensities of all multiply reflected beams incoher-

ently, i.e. by neglecting interference effects. Experimentally,

this condition is realized either if the sample surfaces are not

perfectly parallel or by smoothing out the Fabry–Perot

interference fringes by means of Fourier filtering. In case of

weak absorption kp n; the reflectivity is entirely deter-

mined by n and not suitable to derive k by using a Kramers–

Kronig transformation. At the same time, k can be

determined very accurately from the transmittance. Since

TðvÞ depends exponentially on kd; the appropriate choice of

d is essential. Furthermore, the thickness d determines the

effective ‘resolution’ given by the interference fringes. The

period of the fringes is given by D ~n ¼ ð2ndÞ21; where D ~n is

given in wave numbers if d is given in units of cm. Thus, a

large value of d has the advantage of narrow fringes with a

small amplitude, but strongly restricts the maximum value

of k that can be observed.

The top panel in Fig. 1 shows the reflectivity measured

on a 0.8 mm thick sample ðx ¼ 4Þ for polarization of the

electrical field both parallel to the rungs and to the legs. At

about 600–700 cm21 one can observe the oxygen bond

stretching phonon mode. At higher frequencies, the

reflectivity is featureless, which is characteristic for the

weak absorption regime below the gap of an insulator. We

plotted the data for both 4 K (thick lines) and 300 K (thin

dashed lines), but in RðvÞ they are almost indistinguishable.

The different absolute values of the two polarization

directions reflect the difference in n, namely, na < 2:3 and

nc < 2:6: The weak absorption features we are looking for

can only be detected in a transmittance experiment, which

also reveals a strong temperature dependence. The middle

and bottom panels in Fig. 1 show TðvÞ measured on thin

single crystals with x ¼ 4 ðd ¼ 60 mmÞ and x ¼ 5:2 ðd ¼

28 mmÞ: The data in the middle panel were measured with a

resolution of 4 cm21 and show only small interference

fringes, most probably because the sample surfaces were not

perfectly parallel. The sample with x ¼ 5:2 (bottom panel)

shows strong interference fringes with a period of <
70 cm21; which have been removed by Fourier filtering.

In order to obtain a qualitative estimate of the absorption

features it is common to approximate Eq. (2) by

TðvÞ < ð1 2 RÞ2F: ð4Þ

In this case one obtains the absorption coefficient aðvÞ as

aðvÞ < 2lnðTÞ=d þ 2lnð1 2 RÞ=d: ð5Þ

Neglecting the almost constant second term, we plot

2lnðTðvÞÞ=d for x ¼ 4; 5, and 5.2 at 4 K in the top ðEkcÞ

and middle panels ðEkaÞ of Fig. 2. For comparison, the

optical conductivity sðvÞ as derived by inverting Eq. (2)

without further assumptions is displayed in the bottom panel

of Fig. 2. In sðvÞ the curves for x ¼ 5 and 5.2 almost fall on

top of each other. Note that the erroneous discrepancy

between these two data sets in 2lnðTÞ=d is not due to a

difference in RðvÞ; but due to the approximation used in Eq.

(4). A precise and reliable determination of sðvÞ in the case

of small absorption thus requires the measurement of both

the transmittance T and the reflectivity R and the use of Eq.

(2).

3. Magnetic contribution to sðvÞ

The spectra of sðvÞ can be divided into three different

regimes. The absorption below <1300 cm21 can be

attributed to phonons and multi-phonon bands. The strong

increase at high frequencies is due to an electronic

background, which most probably has to be identified with

Fig. 1. Reflectivity and transmittance of LaxCa142xCu24O41 in the

mid-infrared range at 4 and 300 K.
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the onset of charge-transfer excitations. We focus on the

features in the intermediate frequency range. In order to

analyze them we used Gaussian fits1 to subtract the

electronic background (thin lines in Fig. 3). For Eka; the

background can be determined unambiguously by fitting

the measured data for v . 7000 cm21: After subtraction of

the background the saðvÞ curves are nearly independent of

x, which corroborates the assumption that the ladders are

undoped. For Ekc; the higher absorption complicates the

determination of the background considerably. We were

able to measure the transmittance up to <6200 cm21 (in

case of the x ¼ 5:2 sample with d ¼ 28 mm). Although this

is a significant improvement compared to our earlier work

[12] which was restricted to v & 5000 cm21 ðx ¼ 5Þ; it is

not yet sufficient for an unambiguous determination of the

background. Therefore, we show two different possibilities

for Gaussian fits of the c-axis background in Fig. 3.

The estimates of the magnetic contribution to sðvÞ which

we have obtained this way are shown in Fig. 4 (thin and thick

solid lines). In Ref. [12] we already interpreted these features

in terms of phonon-assisted two-triplet absorption [19,20],

which has been used to describe s1 of the undoped 2D

cuprates (e.g. YBa2Cu3O6 [21]) and of the 1D S ¼ 1=2 chain

Sr2CuO3 [22,23]. Because of spin conservation two triplets

are excited. The simultaneous excitation of a phonon

provides the symmetry breaking necessary to bypass the

dipole selection rule and at the same time takes care of

momentum conservation [12,19–21]. This process is the

lowest order magnetic response possible in infrared absorp-

tion. The two peaks between 2000 and 3000 cm21 (Fig. 4)

can be identified with the 1D van Hove singularities in the

density of states of the strongly dispersing two-triplet bound

state with Stot ¼ 0 [12] (see below). The absorption at higher

energies is attributed to the continuum of two and more

triplets. The improved estimate of the background as

compared to Ref. [12] allows us to detect two peaks within

the continuum at about 3800 and 4700 cm21 for Ekc: The

precise determination of the spectral weight of these high

energy features requires additional work. Note that also the

a-axis spectrum displays a shoulder at high energies

(<5000 cm21), which however is quite weak.

Fig. 3. Optical conductivity s1ðvÞ of La5.2Ca8.8Cu24O41 at 4 K

(thick lines) on a linear (top panel) and on a logarithmic scale

(bottom panel). The thin lines show Gaussian fits of the electronic

background. For Eka the fit is unambiguous. For Ekc two different

background fits are shown in order to illustrate the uncertainty

(compare Fig. 4).

Fig. 2. Bottom panel: s1ðvÞ of LaxCa142xCu24O41 (x ¼ 4; 5, and

5.2) at 4 K, calculated from transmittance and reflectivity given in

Eq. (2). Top and middle panel: plotting the logarithm of the

transmittance divided by the sample thickness already gives a

qualitative estimate of the absorption features without knowledge of

the reflectivity.

1 In our earlier work [12], we subtracted an exponential

background because the transmittance was restricted to a

narrower frequency range. The more recent data in Fig. 3 for Eka

clearly shows that a simple exponential fit is not sufficient.

However, this has only a marginal effect on our estimate of the

magnetic contribution to sðvÞ: The only relevant difference is an

improved description of the high energy continuum for Ekc:
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4. Theory

Antiferromagnetic S ¼ 1=2 two-leg Heisenberg ladders

are represented by the Hamiltonian

H ¼
X

i

{JkðS1;iS1;iþ1 þ S2;iS2;iþ1Þ þ J’S1;iS2;i}; ð6Þ

where J’ and Jk denote the rung and leg couplings,

respectively. For Jk ¼ 0 one can excite local rung singlets to

rung triplets which become dispersive on finite Jk (Fig. 5).

In the chain limit J’ ¼ 0 the S ¼ 1 excitations decay into

asymptotically free S ¼ 1=2 spinons. An intuitive picture of

the ‘magnons’ (i.e. elementary triplets) for J’; Jk – 0 can

be obtained from both limits: the elementary excitations are

either dressed triplet excitations or pairs of bound spinons

with a finite gap D as long as J’ . 0 [13].

Here, we present two theoretical approaches to describe

the excitations of the ladder. One approach makes use of the

Jordan–Wigner transformation to rewrite the spins as

fermions with a long-ranged phase factor. Expanding the

phase factor yields new interaction terms between the

fermions. The resulting interacting fermion problem is treated

diagrammatically. A similar treatment works very well for a

1D chain. The other approach uses an extrapolated

perturbation in Jk=J’ and separates contributions of different

triplet number by continuous unitary transformations [11,13].

Both methods are controlled in the sense that they become

exact on Jk=J’ ! 0: In fact, comparing the results of these

two methods for the dispersion of the elementary triplets (Fig.

5), the agreement is excellent for Jk=J’ # 0:6:

In order to determine the optical conductivity one needs

to calculate the momentum-resolved two-particle spectral

densities with Stot ¼ 0 [13]. The evolution of the spectral

densities from Jk=J’ ¼ 0:2 to Jk=J’ ¼ 1 is plotted for both

theories in Fig. 7. The optical conductivity as shown in Fig.

6 is obtained by integrating these k-resolved curves with a

weight factor v sin4ðk=2Þ [12]. For comparison with

experiment one has to add the phonon energy as a constant

shift of the energy scale (before multiplication by v ).

For Jk=J’ ¼ 0:2 the elementary triplet still shows only

little dispersion (Fig. 5). Therefore the two-particle

continuum is rather narrow; the spectral weight is piled up

at the bottom of the continuum for small momenta k, and for

large k a bound state is formed below the continuum (Fig. 7).

For small ratios of Jk=J’ this bound state reaches its

maximum energy at the Brillouin zone boundary and

dominates in sðvÞ as a single sharp peak with only a

small continuum contribution at higher energies [7] (see left

panels in Fig. 6). With increasing Jk=J’ the bound state

acquires a strong dispersion, and for Jk=J’ * 0:5 it shows a

maximum at k < p=2 and a minimum at the Brillouin zone

boundary (Fig. 7). Both give rise to van Hove singularities in

the density of states which cause peaks in sðvÞ: Therefore,

the dominant peak observed for Jk=J’ ¼ 0:2 splits into two

with increasing Jk (see left panels in Fig. 6). Comparison of

these spectra with the experimental data offers a very

accurate tool to determine the exchange coupling constants,

since the frequencies of the two peaks depend strongly on

the coupling ratio Jk=J’ [12]. For La5.2Ca8.8Cu24O41 we

obtain Jk=J’ ¼ 1:0 and Jk ¼ 1100 cm21 from the Jordan–

Wigner fermions, whereas perturbation theory yields

Jk=J’ ¼ 1:15 and Jk ¼ 1080 cm21: This 15% discrepancy

reflects the differences between the two theories that were

Fig. 4. Comparison of the magnetic contribution to the optical

conductivity of La5.2Ca8.8Cu24O41 at 4 K (solid lines) and of the

calculated results obtained with Jordan – Wigner fermions

(Jk=J’ ¼ 1:0; Jk ¼ 1100 cm21; dashed) and with optimized pertur-

bation theory (Jk=J’ ¼ 1:15; Jk ¼ 1080 cm21; dotted). In the top

panel, the two different experimental curves (thin and thick solid

lines) correspond to the two alternative background fits in Fig. 3.

Fig. 5. Elementary triplet dispersion for 0 # Jk=J’ # 1:2: For each

theory, the thick lines denote the coupling ratio that offers the best

description of the bound states in the optical conductivity of

(La,Ca)14Cu24O41 (Fig. 4).
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already present in the dispersion of the elementary triplet

(Fig. 5). Both theories reproduce the experimental line

shape of the bound state rather well for both polarization

directions. Note that the lower peak is suppressed for Eka

due to symmetry [12].

A ratio of Jk=J’ < 1 seems to be in conflict with several

former results of other techniques, proposing Jk=J’ * 1:5

(see discussion in Ref. [24]). Such a rather small value of J’
is suggested by the small spin gap observed in e.g. neutron

scattering [25,26]. On the basis of our results we can exclude

Jk=J’ * 1:2 [11]. Recently, it was pointed out that the

neutron data (i.e. the small spin gap) are also consistent with

an isotropic exchange Jk=J’ < 1–1:1 and Jk < 900 cm21;

if a cyclic exchange of Jcyc < 0:15Jk is taken into account

[25,26]. Adding a finite cyclic exchange term reduces the

gap at k ¼ p and washes out the dip in the triplet dispersion

at small k [25–27]. Furthermore, the cyclic exchange

weakens the attractive interaction between two rung triplets.

We expect that these two changes, reduction of the dip and

of the attractive interaction, render the theoretical predic-

tions closer to the experimental findings of optical

spectroscopy [27,28]. Since a cyclic exchange term of

<15% is estimated [25–27] we expect a similar change in

Jk=J’:

Finally, we address the evolution of the continuum with

increasing Jk=J’ (Fig. 7). At small k, the spectral density is

broadened strongly by the increasing continuum width.

Therefore, the k ¼ 0 Raman response shows a sharp peak

for small Jk=J’ and a broad band for Jk=J’ < 1 (see Ref. [27]

for more details). For large momenta one can observe the

opposite, the features within the continuum become stronger

and more pronounced with increasing Jk=J’: The mid-band

line of square root singularities which runs from k < p=2 to

k ¼ p denotes the upper edge of the precursor of the spinon

continuum that is well known from the chain limit [13]. For

Jk=J’ ¼ 1 the perturbation result (top left panel of Fig. 7)

shows additional pronounced features within the high energy

part of the continuum [13]. The appearance of these features

is related to the existence of the dip in the dispersion of the

elementary triplet at small k (Fig. 5). Precursors of these

features are present in perturbation theory for Jk=J’ ¼ 0:8;

where the dip in the dispersion is only small. The Jordan–

Wigner fermions do not show these features.

In the weighted superpositions (Fig. 6) the perturba-

tive results for Jk=J’ $ 0:8 display a second peak above

v < 3J’ in the high energy continua. The experimental

data (Fig. 4) also display two peaks in the continuum,

independent of the precise background correction. Yet,

the experimental peaks lie at higher energies and they

are further apart from each other. On inclusion of a

cyclic exchange, the calculated peaks will be shifted to

higher energies since the attractive interaction is

weakened. Therefore, we tentatively identify the two

experimental with the two theoretical peaks even though

their shape and mutual distance are not in perfect

agreement. Further investigations including cyclic

exchange are indispensable.

Summarizing, we reported in detail on one of the first

observations of bound states in gapped spin systems. By

phonon-assisted two-triplet absorption we were able to

detect a bound state in the S ¼ 0 channel resulting from

two elementary triplets in the undoped spin ladder

LaxCa142xCu24O41. The bound state exists for momenta

k p 0:3p: Thus, it was decisive that phonons are involved

in the optical excitation process in order to provide the

necessary momentum. Two theoretical methods were

employed to trace the evolution of the spectral densities

as function of the coupling ratio Jk=J’: In both

approaches the overall position and weight of the

bound state agree well with the measurements. In

experiment and in the perturbative approach two peaks

in the continua are found. Some quantitative differences

indicate that an extension of a simple spin ladder

Hamiltonian is necessary. We argued that a 10–15%

cyclic exchange term is the appropriate extension.

Fig. 6. Comparison of the optical conductivity for Ekc (leg)

calculated with Jordan–Wigner fermions (top panels) and with

optimized perturbation theory (bottom) for 0 # Jk=J’ # 1:15: The

left panels focus on the bound state, whereas the right panels

emphasize the two-triplet continuum on an enlarged y-scale. For

clarity, the curves were shifted with respect to each other by 3 (0.5)

(V cm)21 in the left (right) panels. For each theory, the thick lines

denote the coupling ratio that offers the best description of the

bound states in sðvÞ of (La,Ca)14Cu24O41 (Fig. 4). For comparison

with experiment, the phonon frequency still has to be added (here:

600 cm21).

M. Grüninger et al. / Journal of Physics and Chemistry of Solids 63 (2002) 2167–2173 2171



Fig. 7. Momentum dependence of the two-triplet spectral densities with Stot ¼ 0 for Ekc: Calculations were performed with optimized

perturbation (left) and with Jordan–Wigner fermions (right) for 0 # Jk=J’ # 1: The k-resolved and v-integrated weights for the two theories

agree within 25% (note the different scalings of the plots). Gray curves represent the bound state, which was divided by 16 and artificially

broadened by J’=100 in the left panels. Black curves indicate the continuum. Inset of bottom left panel: enlarged view of the continuum, the

bound state is not shown here.
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Note added in proof

Further improvement of the estimate of the electronic

background was achieved for polarization along the legs by

measurements on a sample with d ¼ 6 mm. The data confirm

the existence of a strong continuum contribution and agree

very well with dynamical DMRG results, where a cyclic

exchange term of Jcyc/Jk < 0.15 was taken into account

[T.S. Nunner et al., cond-mat/ 0203472].
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[17] M. Grüninger, Diplomarbeit, University of Karlsruhe, 1994.

[18] H.S. Choi, E.J. Choi, Y.J. Kim, Physica C 304 (1998) 66.

[19] J. Lorenzana, G.A. Sawatzky, Phys. Rev. Lett. 74 (1995) 1867.

[20] J. Lorenzana, G.A. Sawatzky, Phys. Rev. B 52 (1995) 9576.
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