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A unified picture for the Raman response of magnetic excitations in cuprate spin-ladder compounds is
obtained by comparing calculated two-triplon Raman line shapes to those of the prototypical compounds
SrCu2O3 �Sr123�, Sr14Cu24O41 �Sr14�, and La6Ca8Cu24O41 �La6Ca8�. The theoretical model for the two-leg
ladder contains Heisenberg exchange couplings J� and J� plus an additional four-spin interaction Jcyc. Within
this model Sr123 and Sr14 can be described by xªJ� /J�=1.5, xcycªJcyc/J�=0.2, J�

Sr123=1130 cm−1 and
J�

Sr14=1080 cm−1. The couplings found for La6Ca8 are x=1.2, xcyc=0.2, and J�
La6Ca8=1130 cm−1. The unex-

pected sharp two-triplon peak in the ladder materials compared to the undoped two-dimensional cuprates can
be traced back to the anisotropy of the magnetic exchange in rung and leg direction. With the results obtained
for the isotropic ladder, we calculate the Raman line shape of a two-dimensional square lattice using a toy
model consisting of a vertical and a horizontal ladder. A direct comparison of these results with Raman
experiments for the two-dimensional cuprates R5CuO4�R=La,Nd�, Sr2CuO2Cl2, and YBa2Cu3O6+� yields a
good agreement for the dominating two-triplon peak. We conclude that short-range quantum fluctuations are
dominating the magnetic Raman response in both ladders and planes. We discuss possible scenarios respon-
sible for the high-energy spectral weight of the Raman line shape, i.e., phonons, the triple-resonance, and
multiparticle contributions.

DOI: 10.1103/PhysRevB.72.094419 PACS number�s�: 75.40.Gb, 75.50.Ee, 75.10.Jm

I. INTRODUCTION

Strongly correlated electron systems in low dimensions
are of fundamental interest because of their fascinating prop-
erties resulting from strong quantum fluctuations.1–3 Espe-
cially in the case of the high-Tc cuprate superconductors, the
role of quantum fluctuations is heavily debated. Two-magnon
Raman scattering has been proven to be a powerful tool to
study quantum fluctuations in the magnetic sector.4–9 In con-
trast to the well-understood magnon dispersion as meas-
ured by inelastic neutron scattering,10–14 the quantitative un-
derstanding of the two-magnon line shape in the Raman
response5,6 and in the optical conductivity15–18 remains an
issue open to debate.

Interestingly, in the so-called cuprate ladder sys-
tems like Sr123 or the telephone-number compounds
�Sr,Ca,La�14Cu24O41, a prominent peak in the mag-
netic Raman response is observed at the same energy
of �3000 cm−1, as in the two-dimensional �2D�
compounds.19,20,22,23 In contrast to the gapless long-range-
ordered two-dimensional compound, the quasi-one-
dimensional two-leg ladders are known to be realizations of
a gapped spin liquid.21 Because the elementary excitations
above this ground state are triplons,24 we call the correspond-
ing Raman response as two-triplon Raman scattering.

On the one hand, one may expect that the Raman re-
sponse is dominated by short-range, high-energy excitations,
suggesting a certain similarity between ladders and planes,
both being built from edge-sharing Cu4 plaquettes. The peak
frequencies are, in fact, at 3000 cm−1. On the other hand, the
line shape and, in particular, the peak width strongly varies
between different compounds. In 2D, the peak width is of the
order of 1000 cm−1, in La6Ca8 �500 cm−1, in Sr123 and
Sr14 only 100–200 cm−1. Because of the observation of a
very sharp two-triplon Raman line in the spin liquid Sr14,
Gozar et al. have questioned whether the large linewidth in
2D and the related, heavily discussed spectral weight above
the two-magnon peak can be attributed to quantum
fluctuations.20

In the last few years, theoretical developments in the field
of quasi-one-dimensional systems, namely, the quantitative
calculation of spectral densities,25–31 has led to a deeper un-
derstanding of magnetic contributions to the Raman response
of undoped cuprate ladders. Besides the usual Heisenberg
exchange terms, the minimal magnetic model includes four-
spin interactions that are four to five times smaller than the
leading Heisenberg couplings.19,27,28,32,33 The existence and
the size of the four-spin interactions are consistent with the-
oretical derivations of generalized t-J models from one-band
or three-band Hubbard models.34–40
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In the present paper we show that the strong variation of
the linewidth can be traced back to changes of the spatial
anisotropy of the exchange constants. The sharp Raman line
in Sr14 and Sr123 results from x=1.5, the increased line-
width in La6Ca8 reflects x=1.2, and the isotropic coupling
x=1 for the square lattice yields the much larger width ob-
served in 2D. In fact, we obtain a quantitative description of
the dominant Raman peak in 2D using a toy model that
mimics the 2D square lattice by the superposition of a verti-
cal and a horizontal ladder. We thus conclude that the domi-
nant Raman peak is well described by short-range excita-
tions.

Besides the dominant two-triplon peak, the large spectral
weight measured at high energies remains an open problem
for the cuprate ladders and planes. We review possible
sources of the high-energy spectral weight that were sug-
gested in the past, e.g., quantum fluctuations,26,41–45 the role
of spin-phonon interaction,4,46–51 and the triple
resonance.5,52–54 In case of the cuprate planes, no final con-
clusion concerning the origin of the high-energy weight can
be drawn; but in the case of the cuprate ladders, the spin-
phonon coupling and the triple resonance can be ruled out.

II. MODEL

In Raman scattering, multiparticle excitations with zero
change of the total spin can be measured. Starting at T=0
from a S=0 ground state, the singlet excitations with com-
bined zero momentum are probed. The Raman response in
spin ladders has been calculated by first-order perturbation
theory55 and by exact diagonalization.56 In this work, Raman
line shapes are presented, obtained from continuous unitary
transformations �CUT� using rung triplons as elementary
excitations.26,32 The results are not resolution limited because
neither finite-size effects occur nor an artificial broadening is
necessary.

For zero hole doping, the minimum model for the mag-
netic properties of the S=1/2 two-leg ladders is an antifer-
romagnetic Heisenberg Hamiltonian plus a cyclic four-spin
exchange term Hcyc

27,57,58

H = J��
i

S1,iS2,i + J��
i,�

S�,iS�,i+1 + Hcyc �1a�

Hcyc = Jcyc�
i

K�1,i�,�2,i�,�2,i+1�,�1,i+1� �1b�

K�1,1�,�1,2�,�2,2�,�2,1�

= K1234 = �S1S2��S3S4� + �S1S4��S2S3� − �S1S3��S2S4� ,

�1c�

where i denotes the rungs and �� �1,2� the legs. The ex-
change couplings along the rungs and along the legs are
denoted by J� and J�, respectively. The relevant couplings
modeling Sr123 and Sr1459,60 are illustrated in Fig. 1. There
is also another way to include the leading four-spin exchange
term by cyclic permutations,27,33 which differs in certain
two-spin terms from Eq. �1�.33 Both Hamiltonians are iden-

tical except for couplings along the diagonals if J� and J� are
suitably redefined.61

At T=0 the Raman response I��� is given by the retarded
resolvent

I��� = −
1

�
Im�0	O†�� − H + i��−1O	0
 . �2�

The observables Orung�Oleg� for magnetic light scattering in
rung-rung �leg-leg� polarization read in leading order62,63

Oleg = A0
leg�

i

�S1,iS1,i+1 + S2,iS2,i+1� �3a�

Orung = A0
rung�

i

S1,iS2,i. �3b�

The factors A0
leg and A0

rung depend on the underlying micro-
scopic electronic model. It is beyond the scope of the present
work to compute them. The results will be given in units of
these factors squared. In this paper, we will only consider
nonresonant Raman excitation processes. We discuss which
laser energy should be used in order to investigate the non-
resonant regime.

III. METHOD

Technically, we employ a CUT to map the Hamiltonian
H to an effective Hamiltonian Heff, which conserves
the number of rung-triplons, i.e., �H0 ,Heff�=0 where H0

ª 	H	�J�=0;Jcyc=0�.
64–66 The ground state of Heff is the rung-

triplon vacuum. For the response function I���, the observ-
able O is mapped to an effective observable Oeff by the same
CUT. The CUT is implemented in a perturbative fashion in
x=J� /J� and xcyc=Jcyc/J�. The effective Hamiltonian is cal-
culated up to high orders �1-triplon terms: 11th, two-triplon
terms: 10th order�. The effective observable Oeff is computed
to order 10 in the two-triplon sector.

The resulting plain series are represented in terms of the
variable 1−�SG/ �J� +J��67,68 where �SG is the one-triplon
gap. Then standard Padé extrapolants69 yield reliable results
up to J� /J�=1–1.5 depending on the value of Jcyc/J�. Con-
sistency checks were carried out by extrapolating the in-
volved quantities before and after Fourier transforms. In case
of inconclusive extrapolants, the bare truncated series are
used. We will estimate the overall accuracy below by com-
paring to density matrix renormalization group �DMRG�
results.27 The Raman line shape is finally calculated as a

FIG. 1. �Color online� Schematic view of a two-leg ladder �no-
tation as in Eq. �1��. The circles denote the positions of Cu2+ ions
carrying a spin 1

2 each. The crystallographic axes are such that x �b
and y �a for Sr123 and x �a and y �c for Sr14.
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continued fraction by tridiagonalization of the effective two-
triplon Hamiltonian.

Sectors with an odd number of triplons are inaccessible
by Raman scattering because of the invariance of the two
observables Oeff

leg and Oeff
rung with respect to reflections about

the centerline of the ladder.26 Thus, only excitations with an
even number of triplons matter. Therefore, the leading con-
tributions to the Raman response come from the two-triplon
sector. It was shown earlier that the two-triplon contribution
is the dominant part of the Raman response at low and inter-
mediate energies.26,70 The role of the four-triplon contribu-
tion for the high-energy spectral weight will be discussed at
the end of this work.

IV. CUPRATE LADDERS

In this part we will compare the theoretically obtained
two-triplon contributions to the experimental line shapes of
the cuprate ladders Sr123 and Sr14. The crystals of Sr123
have been grown and measured under the same conditions as
described in Refs. 71 and 19 while the data of Sr14 have
been provided by Gozar et al.20 The experimental Raman
line shape depends strongly on the laser energy because reso-
nant contributions are present. This becomes apparent in a
strong anisotropy between the width of the two-triplon peak
in leg and rung polarization for laser energies �exc
=2–3 eV. The width of the two-triplon peak in leg polariza-
tion is much sharper. For laser energies �exc�2 eV, the
strong anisotropy between both polarizations vanishes.20 It is
therefore important to figure out which laser energy has to be
used for the comparison between the nonresonant theory and
the experiment in order to study the magnetic excitations
only.

The first criterion can be gained from the optical conduc-
tivity as, for example, given in Ref. 20: the intensity of the
two-triplon peak develops in the same way as the optical
conductivity. For the nonresonant regime, both energy of the
incident and scattered light should be smaller than the
charge-transfer gap �Sr14: �T=10 K�2.1 eV�. Thus, we have
chosen spectra with laser energies �exc=1.92 eV in the case
of Sr14 and �exc=1.95 eV for Sr123. Luckily, the value of
the optical conductivity is about 100 �−1 cm−1 in the subgap
regime20 at �=�exc−E2 T�1.5 eV �which is one to two or-
ders of magnitude larger than for the 2D cuprates72�, yielding
a nonvanishing intensity of the two-triplon peak. Here E2T
denotes the energy of the two-triplon peak.

The second criterion arises from the polarization depen-
dence of the two-triplon peak. Depending on the laser energy
used, one can observe a drastic difference in the line shape
between the two polarizations.19,20 Although the difference in
the line shapes is large for �exc�2.1 eV, it does almost van-
ish in the case of �exc�2.0 eV.20 This fits very well to the
weak polarization dependence of the purely magnetic re-
sponse, as described by Eqs. �3�: for xcyc=0.0, the Raman
line shape is identical in the rung and the leg polarization.
Small deviations xcyc=0.2 as relevant for the description of
Sr123 and Sr14 produce small deviations with respect to the
symmetry between the rung and leg polarization of the lad-
der. These deviations cannot account for the drastic change

between the two polarizations as observed for
�exc�2.1 eV.19,20 We therefore conclude that the spectra
�exc�2.0 eV are the best choice in order to compare to a
purely magnetic, nonresonant theory.

Now we discuss the dependence of the width of the two-
triplon peak on the parameters x and xcyc. In Fig. 2, the full
width at half maximum �FWHM� of the two-triplon peak is
shown. The overall uncertainty shown as error bars in Fig. 2
of the extrapolated two-triplon FWHM was determined by
comparing to DMRG data.73

Let us first consider the case xcyc=0.0. Here the two-
triplon width should be identical in both polarizations. It can
be clearly seen that the numerically obtained results reflect
this property rather well, indicating that the uncertainties in
the extrapolation are small concerning the matrix elements.
There is a strong dependence of the FWHM of the two-
triplon peak on the parameter x. The peak sharpens signifi-
cantly when the ratio x of the magnetic Heisenberg ex-
changes increases �four times from x=1 to x=1.5�. In the
case of xcyc�0, the width depends on the polarization. In
general, the width in �xx� polarization is larger than in �yy�
polarization. For fixed x the FWHM changes at maximum by
a factor of two when varying xcyc from 0 to 0.2.

In Figs. 3�a�–3�d�, the experimental Raman response of
Sr123 and Sr14 is shown for �xx� and �yy� polarization �red-
black and cyan-gray curves�. The spectra of Sr123 were
taken in the same way as described in Ref. 19. The data of
Sr14 has been made available by Gozar et al.20 In addition,
theoretically obtained two-triplon contributions are displayed
�orange-gray and blue-black�. Experimentally, the width of
the two-triplon peak of both materials is almost identical �
�150 cm−1�. Only the position of the two-triplon peak is
different ��3140 cm−1 for Sr123 and �3000 cm−1 for Sr14�,
which is a result of the slightly different Madelung potentials
of both compounds.

For modeling the Raman response, we assume xcyc=0.2
for both compounds. This order of magnitude was previously
obtained for cuprate ladders by inelastic neutron scatter-
ing,57,58 by infrared absoption,27,28 Raman response,19,32 and
theoretical works deriving extended low-energy Heisenberg
models.35,74 In order to account for the FWHM and the two-
triplon peak position, we determine x=1.5 and global energy
scales J�=1130 cm−1 for Sr123 and J�=1080 cm−1 for
Sr14. It was previously argued that in Sr14, a charge order of
the chain subsystem modulates the magnetic exchange in the
ladders.32 This opens a gap in the Raman response that has a
large effect on the two-triplon peak for the parameters x
=1.2 and xcyc=0.2, which are appropriate for La6Ca8. How-
ever, the effect is small for larger x values because the in-
duced gap opens well above the two-triplon peak at
�3600 cm−1. The set of parameters used above for Sr123
and Sr14 describes quantitatively well the Raman response
as shown in Table I and Figs. 3�a�–3�d�. Especially both
polarizations for each material can be modeled using only
one set of parameters J�, x, and xcyc. The smaller FWHM
of Sr123 and Sr14 compared to La6Ca823,32 can be directly
explained by their larger x values �see Fig. 2�. The coup-
ling constants of Sr14 are in good agreement with those
obtained by IR absorption measurements.75 Additionally,
our set of parameters yields a spin gap of 290 cm−1 for Sr123

RAMAN RESPONSE OF MAGNETIC EXCITATIONS IN… PHYSICAL REVIEW B 72, 094419 �2005�

094419-3



and 280 cm−1 for Sr14 using the underlying one-triplon dis-
persion. The latter value is consistent with the spin gap mea-
sured by inelastic neutron scattering.76

V. CUPRATE PLANES

In this section we calculate the Raman response for the
undoped two-dimensional cuprate compounds using a toy
model consisting of two uncoupled two-leg ladders �see Fig.
4�. This is motivated by the fact that the building blocks of
ladders and planes are edge-sharing Cu4 plaquettes. We ex-
pect that the Raman response is dominated by short-range
and high-energy excitations, yielding a certain similarity be-
tween ladders and planes. Indeed, the positions of the two-
magnon peak in the 2D cuprates and the two-triplon peak in
the cuprate ladders are found at almost the same frequency
�3000 cm−1, but the FWHM of the two-dimensional com-
pounds is a factor of 2–6 larger. We have shown in Sec. IV
that the FWHM of the two-triplon peak in the cuprate ladder
compounds strongly varies with x. We therefore conjecture
that the larger FWHM of the two-dimensional cuprates origi-
nates from the isotropic coupling x=1. There will, of course,
be deviations at small energies resulting from the differences
between a gapped two-leg ladder and the gapless excitations
in the two-dimensional compounds. Clearly, a magnon de-
scription would be the proper starting point to treat the long-
range-ordered antiferromagnetic state. We think, however,
that a triplon picture �which includes the interactions on the
quantitative level� can give a good description of the Raman
response. A similar treatment in terms of gapped quasiparti-
cles already led to an improved agreement between theory
and experiments.78,79

In the following we will show how to deduce the A1g and
B1g Raman spectra of the square lattice from those of the
two-leg ladder. Clearly, one should use x=1 because the
square lattice is isotropic �J=J� =J��. Starting from the
Fleury-Loudon operator, the observables OB1g�OA1g� for
magnetic light scattering in B1g�A1g� polarization read in
leading order for the two-dimensional square lattice62,63

OB1g = A0,B1g �
�ij
,x

SiS j − �
�ij
,y

SiS j� �4a�

OA1g = A0,A1g �
�ij
,x

SiS j + �
�ij
,y

SiS j� . �4b�

Here �ij
 ,x��ij
 ,y� denotes a summation over nearest
neighbors in the x direction �y direction�. The parameters
A0,B1g and A0,A1g depend on the underlying microscopic
model and are, in general, not equal.63 We approximate the
two-dimensional square lattice by a sum of two uncoupled
two-leg ladders, one oriented in x direction, the other in y
direction. The situation is sketched in Fig. 4. The summation
over both ladder orientations will restore the square lattice
symmetries. Comparing Eq. �4� with Eq. �3� one readily de-
duces the following relations:

OB1g 	 �Oleg − Orung� �5a�

FIG. 2. �Color online� The FWHM of the two-triplon peak for
xªJ� /J�=1 �squares�, x=1.25 �triangles� and x=1.5 �diamonds� as
a function of the strength of the four-spin interactions xcyc

ªJcyc/J�. The orange �gray� symbols denote �xx� polarization and
the blue �black� symbols �yy� polarization. The solid lines are a
guide to the eye obtained by spline interpolation.

FIG. 3. �Color online� Comparison of the magnetic Raman re-
sponse of Sr123 �T=25 K� and Sr14 �T=5 K� with the theoretically
obtained two-triplon contribution. The data of Sr14 have been pro-
vided by Gozar et al.20 �a� The red �black� curve denotes the �xx�
polarization �x �b� of Sr123 with a laser excitation energy �exc

=1.95 eV. The orange �gray� curve displays the theoretical two-
triplon contribution with x=1.5, xcyc=0.2, and J�=1130 cm−1. �b�
The red �black� curve denotes the �xx� polarization �x �a� of Sr14
with a laser excitation energy �exc=1.92 eV. The orange �gray�
curve displays the theoretical two-triplon contribution with x=1.5,
xcyc=0.2, and J�=1080 cm−1. �c� �yy� polarization �y �a� for Sr123;
identical parameters as in �a�. The cyan �gray� curve displays the
experimental data, and the blue �black� curve the theoretical two-
triplon contribution. �d� �yy� polarization �y �c� for Sr14; identical
parameters as in �b� and the same colors as in �c�.
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OA1g 	 �Oleg + Orung� �5b�

between the relevant observables in the two-leg ladder and
the two-dimensional square lattice. Note that for xcyc=0, the
Raman response in the A1g polarization vanishes because of
the property Oleg	0
=−Orung	0
.26 The latter point is consis-
tent with earlier treatments of the two-dimensional Raman
response. But for a finite strength of the four-spin interac-
tions xcyc, also the A1g polarization is finite.43,46

The theoretical two-triplon contribution of the B1g and the
A1g polarization is shown in Fig. 5�a� and 5�b�. The param-
eters used are an isotropic coupling x=1 and a strength of the
four-spin interactions xcyc=0.0, xcyc=0.1, and xcyc=0.2.

The B1g polarization displays a symmetric two-triplon
peak, which is dominating the Raman response. The four-
spin interactions shift the whole spectrum to lower energies
and decrease the total intensity. The FWHM of the two-
triplon peak is approximately given by the average width of
the two-triplon peaks of an isolated two-leg ladder in rung
and in leg polarization. Thus, the width is nearly independent
of the value of xcyc.

The A1g polarization is almost zero for vanishing xcyc.
This again reflects the accurate extrapolation of the matrix

elements. For nonzero xcyc, a finite A1g contribution is real-
ized. The differences in the line shape between A1g and B1g
are a pure effect of different matrix elements. Compared to
the two-triplon peak in the B1g polarization, the A1g polar-
ization displays a two peak structure where the second peak
is sharper and at higher energies.

In the following we will compare the theoretical two-
triplon contribution to the Raman response with low-
temperature experimental data on R2CuO4��exc=2.71 eV�,6
Sr2CuO2Cl2��exc=2.73 eV�,5 and YBa2Cu3O6+���exc

=2.71 eV�6 taken from the literature.
As discussed in Sec. IV, the laser energy used for the

experiment is a crucial issue. Analogous to the ladders, one
should use spectra of cuprate planes measured with laser
energies below the charge gap for comparing to the purely

TABLE I. Comparison of the two-triplon peak between experimental data of different cuprate ladder and plane compounds and the
theoretical results.

Material

Experiment Theory �CUT�

Peak
�cm−1�

FWHMa

�cm−1�
�exc

�eV� Ref. x xcyc

J�

�cm−1�
FWHM
�cm−1�

SrCu2O3 �xx� 3120 150–220 1.96 this work 1.5 0.2 1130 180

SrCu2O3 �yy� 3150 120–180 1.96 this work 1.5 0.2 1130 140

Sr14Cu24O41 �xx� 3000 100–160 1.92 20 1.5 0.2 1080 180

Sr14Cu24O41 �yy� 3000 120b 1.92 20 1.5 0.2 1080 140

La6Ca8Cu24O41 �xx� 3010 550b 2.41 23 and 32 1.2 0.2 1130 580

La6Ca8Cu24O41 �yy� 2950 350b 2.41 23 and 32 1.2 0.2 1130 350

Sr2CuO2Cl2 2950 800–1100 2.73 5 1.0 0.2 1190 1000

YBa2Cu3O6+� 2750 1000–1150 2.71 6 1.0 0.2 1110 940

La2CuO4 3170 950–1150 2.71 6 1.0 0.2 1280 1080

Nd2CuO4 2930 900–1050 2.71 6 1.0 0.2 1190 1000

aLower limit of exp. FWHM: linear background subtracted from data. Upper limit: no background corrections.
bExp. FWHM: linear background subtracted from data because background exceeds almost the two-triplon peak heights.

FIG. 4. �Color online� Sketch of two uncoupled spin ladders.
Here one ladder is oriented in y direction and the other in x direc-
tion. We approximate the two-dimensional square lattice by the sum
of these two uncoupled orthogonal ladders.

FIG. 5. �Color online� Two-triplon Raman response of the 2D
square lattice for x=1. �a� B1g polarization for xcyc=0.0 �cyan
�gray��, xcyc=0.1 �dashed� and xcyc=0.2 �blue �black��. �b� A1g po-
larization for xcyc=0.0 �orange �gray��, xcyc=0.1 �dashed� and xcyc

=0.2 �red �black��. Note the different scales for the Raman response
in A1g and B1g spectra.
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magnetic theoretical response. But it turns out that the opti-
cal conductivity is rather low �
10 �−1 cm−1� below the
charge gap �, which results in a vanishing intensity of the
two-magnon peak.5 An analogous choice of the laser ener-
gies below the charge gap, as discussed for the cuprate lad-
ders is not possible. Therefore, we used data measured with
laser energies �exc=2.7 eV��. At the energy �exc=2.7 eV,
the optical conductivity is quite smooth and �exc��
��1.7–2.0� eV.5,72,77 Simultaneously, �exc=2.7 eV coin-
cides with the triple resonance at �res��+8J. The triple
resonance theory predicts two peaks in the Raman response
at about 2.8J and 4J. The relative intensity of both peaks
depends on the laser energy. The second peak is strongly
suppressed at �res. In that sense this laser energy can be
assigned to be closest to the non-resonant regime.52–54

In Fig. 6, experimental data and theoretical contributions
using x=1 and xcyc=0.2 are shown for both polarizations.
Frequencies are measured in units of J. We first discuss the
B1g polarization in Fig. 6�a�. We have chosen the global en-
ergy scale J for all experimental curves such that the posi-
tions of the experimental two-magnon and the theoretical
two-triplon peaks match. This yields quantitatively reason-
able values for these compounds. In addition, we find quan-
titative agreement between the experimental FWHM and the
theoretical FWHM of the two-triplon peak. The values of J
and the FWHM are listed in Table I for all compounds. Note
that the FWHM for x=1 is larger than for the anisotropic
case x�1 as discussed for the ladder compounds.

Clearly, there are also deviations between theory and ex-
periment. As expected, the low-energy spectral weight in the

theoretical line shape is larger compared to the experimental
curves. This is definitely a consequence of approximating the
two-dimensional square lattice with quasi-one-dimensional
models. There is also spectral weight missing at higher en-
ergies above the two-triplon peak. Possible explanations will
be described below.

The results for the A1g polarization �shown in Fig. 6�b��
are explained next. We used the same global energy scales J
for the experimental curves as determined from the B1g po-
larization above. In order to reproduce the maximum inten-
sity of the experiment, we multiplied the theoretical curve
from Fig. 5�b� by a factor 5. This implies that the micro-
scopic parameters A0,B1g and A0,A1g are anisotropic. A pos-
sible reason for this anisotropy could be the restriction to the
Fleury-Loudon observable. An extension of this observable
to higher orders in t /U �four-spin and next-nearest neighbor
two-spin terms� gives additional contributions to OB1g and
OA1g.63 The relevance of these contributions has not been
analyzed.

In the experiment a broad hump is measured. We find it
very promising that the theoretical contribution displays the
dominant spectral weight just for these energies. However,
the line shape cannot be resolved completely because the dip
in the theoretical curve is not observed in the experiment. It
originates from neglecting the finite lifetime effects, which
are already present in the description of the isolated two-leg
ladder32,70 being the building block of our square-lattice toy
model. We conclude that at least a part of the experimental
A1g polarization originates from the finite four-spin interac-
tions. For xcyc=0, there is no purely magnetic contribution to
the Raman response for this polarization. A finite A1g Raman
response can be regarded as an evidence for the presence of
sizable four-spin interactions. This follows entirely from
symmetry arguments and holds true for the full two-
dimensional model. At higher energies, spectral weight is
missing in the theoretical contribution in an analogous fash-
ion as in the B1g polarization.

VI. HIGH-ENERGY SPECTRAL WEIGHT

As shown in Secs. IV and V, the CUT cannot account for
the missing high-energy spectral weight when comparing to
the Raman experiments. Also other theories proposed previ-
ously like calculations based on spin-waves,41,42

paramagnons,78 Jordan-Wigner fermions,79 and numerical
studies26,44,55,56 were faced with the same problem. Extended
theories, including �i� multiparticle contributions, �ii� spin-
phonon coupling, �iii� two-magnon or two-triplon plus pho-
non absorption, and �iv� triple resonance are necessary in
order to describe the high-energy spectral weight.

Most of the publications deal with the two-dimensional
compounds. Here we will try to review these ideas and reex-
amine them in the light of our results. Especially, the quan-
titative results for the cuprate ladders can give insight in this
discussion.

A. Multiparticle contributions

One open problem is the role of multiparticle contribu-
tions to the Raman response, i.e., the four-magnon contribu-

FIG. 6. �Color online� Comparison of the two-triplon Raman
response to the two-magnon Raman line shape of Nd2CuO4 ��exc

=2.71 eV, T=30 K� and Sr2CuO2Cl2 ��exc=2.73 eV, T=5 K�. The
Raman data of Nd2CuO4 and Sr2CuO2Cl2 are reproduced from
Refs. 6 and 5. The experimental curves are smoothed and their zero
position is shifted horizontally as indicated by the black horizontal
lines. �a� B1g polarization: The blue �black� curve denotes the two-
triplon contribution with x=1 and xcyc=0.2. The global energy scale
J is chosen such that experimental two-magnon and the theoretical
two-triplon peak merge. This yields J=1190 cm−1 for Nd2CuO4

�cyan�grey�� and Sr2CuO2Cl2 �dashed�. �b� A1g polarization
�theory: red �black�; experiment: organge �grey��: Same notations as
in �a�. Note that the same magnetic exchange couplings J are used.
The A1g-CUT is multiplied by a factor of 5 in comparison to the
curve in Fig. 5.
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tion in the case of the square lattice and the four-triplon
contribution in the case of the two-leg ladder. At this stage
no quantitative calculations are available. But it is known
that the multitriplon spectral weights are sizable for the two-
leg ladder.26,70 The main effect of the four-spin interaction on
the high-energy spectral weight is a small shift from the two-
triplon to the multitriplon channels.70 But this shift is not
sufficient to account for the high-energy spectral weight as
observed in experiments. This was also found in treatments
for the two-dimensional square lattice.18,43,45 However, the
complete magnetic infrared absorption spectrum �including
the high-energy part� of La6Ca8 can be described quantita-
tively by including multiparticle contributions.27,28 Here xcyc
does not play the dominant role for the high-energy spectral
weight.80

It is therefore plausible that these contributions give a
noticeable effect also on the high-energy Raman response.
There are also indications that the spectral weight cannot be
fully explained in this way. For example, the four-magnon
spectral weight was shown to be negligible for the 2D square
lattice.42 But the magnon-magnon interaction, which was not
treated in this calculation, could enhance the high-energy
spectral weight. Also quantum Monte Carlo calculations,
which include all magnon contributions for the two-
dimensional Heisenberg model, seem to explain only a part
of the high-energy spectral weight.44 But finite-size effects
and inaccuracies of the analytical continuation can lead to
uncertainties in determining the high-energy spectral weight.

B. Spin-phonon coupling

The latter observations suggest that additional degrees of
freedom are important. It was argued by several authors that
the coupling to phonons produces a large amount of spectral
weight above the two-triplon peak.4,46,48–51 In one approach
the spin-phonon coupling modulates the magnetic exchange
couplings with a Gaussian distribution. Another approach in-
troduces a finite spin-wave damping induced by the spin-
phonon coupling. Both scenarios produce a significantly
broadened and asymmetric two-magnon peak as observed in
experiments.50,51

Nevertheless, the consistency of a spin-phonon coupling
as suggested above with experiments is not clear. The mag-
nitude of this coupling has to be unrealistically large in order
to describe infrared absorption data.17 Additionally, it was
pointed out by Freitas and Singh81 that the temperature-
dependent correlation length and the spin dynamics, which
agree well with purely magnetic models, does not leave
room for such a coupling.82,83

There are no investigations of the role of spin-phonon
couplings for the case of the cuprate ladder systems. But the
FWHM of the two-triplon peak can be quantitatively under-
stood within a purely magnetic model as shown in Sec. IV.
Thus, we conclude that the spin-phonon coupling is not
strong in the case of the cuprate ladder compounds. Such a
coupling leads to a broad two-triplon peak in the same way
as for the two-dimensional case. This is a contradiction when
considering the Raman response and the infrared absorption
of cuprate ladders, simultaneously: on the one hand, one

needs a larger anisotropy between leg and rung coupling
�larger x� in order to sharpen the two-triplon peak in the
Raman response again �see Fig. 2�; but on the other hand,
one cannot explain the infrared absorption with an substan-
tially increased x.27,75 A strong spin-phonon coupling is,
therefore, in contradiction with the results obtained for cu-
prate ladders. This can be also seen as an indication that the
same holds true for the two-dimensional compounds.4

C. Two-magnon or two-triplon plus phonon absorption

A third alternative explaining the high-energy spectral
weight uses phonons as possible momentum sinks. Here a
strong spin-phonon coupling is not necessary. The idea is
based on the work of Lorenzana and Sawatzky for infrared
absorption.18,84,85 It is well accepted in the case of infrared
absorption measurements on cuprate ladders27,80 and
planes17,18 that the dominant processes are magnetic excita-
tions, which are assisted by phonons. It was realized by Frei-
tas and Singh that similar processes could be important also
for the Raman response in cuprate planes.81 In an analogous
fashion a two-triplon plus �Raman active� phonon process
for the Raman response in cuprate ladders could be impor-
tant. It can be used to transfer spectral weight above the
two-triplon peak leading to an asymmetric line shape. It is a
difficult task to determine the relative strength of this process
compared to the usual two-triplon scattering.

D. Triple resonance

Additionally, the triple resonance was proposed to ac-
count for the high-energy spectral weight in the two-
dimensional compounds.5,52–54 As already stated in Sec. V,
the experimental spectra of the planes are taken in the reso-
nant regime. It is known that the triple resonance scenario
yields an additional peak above the two-magnon peak. Its
intensity depends significantly on the energy of the incident
light in accordance with experiments.5 In principle, the same
effect is also present in ladder compounds. But for the laser
energy �exc=1.92 eV�� considered for Sr123 and Sr14, the
triple resonance condition is not fulfilled.

Because of the simplified model used for the 2D system,
no conclusion about the high-energy weight can be drawn
from our results. Because a large spin-phonon coupling and
the triple resonance can be ruled out for the cuprate ladder
systems, the observed high-energy spectral weight in the cu-
prate ladder compounds has to be explained most probably
by the multitriplon or two-triplon plus phonon contributions.

VII. CONCLUSION

The first part of this work deals with the theoretical un-
derstanding of nonresonant magnetic Raman scattering on
cuprate two-leg ladder compounds, namely, Sr123, Sr14, and
La6Ca8. Therefore, we applied a triplon-conserving CUT on
a microscopic spin-model which includes Heisenberg cou-
plings and additional four-spin interactions. We studied the
two-triplon contribution to the nonresonant magnetic Raman
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response. The dominating feature of the two-triplon contri-
bution is the two-triplon peak, which has a characteristic
FWHM depending on the model parameters x and xcyc. We
carefully chose the experimental data closest to the non-
resonant regime and compared them with our theory.

The key observation we found is that the sharpness of the
two-triplon peak in Sr123 and Sr14 in comparison to La6Ca8
can be explained by the stronger anisotropy of the magnetic
exchange along the rungs and legs of the ladder. Indeed, the
two-triplon peak width depends strongly on the parameter x.
Both materials can be modeled with the parameters x�1.5
and xcyc�0.2, but different global energy scales J�

�1130 cm−1 for Sr123 and J��1080 cm−1 for Sr14. The
parameters for Sr14 are in good agreement with infrared
absorption27,75 and inelastic neutron scattering76 experi-
ments. We conclude that the dominating two-triplon peak of
the magnetic Raman response in cuprate ladders can be con-
sistently explained within the microscopic model. The pres-
ence of a four-spin interaction of the order of 0.2J� can be
viewed as a settled issue.

In the second part of this paper we used the results found
for the two-leg ladder to describe the magnetic Raman re-
sponse of the undoped two-dimensional cuprate compounds
in B1g and A1g polarization. The contribution to the A1g po-
larization is only allowed for finite four-spin interactions due
to symmetry reasons. We use an isotropic coupling x=1 and
xcyc=0.2 for the comparison with the experimental data.
Convincingly, we find quantitative agreement for the two-
triplon peak position and the two-triplon peak width for sev-
eral compounds. Additionally, a sizable spectral weight is
found in the A1g polarization consistent with experiments.

We conclude that the processes dominating the magnetic Ra-
man response are short ranged.

The last part deals with the missing high-energy spectral
weight above the dominating two-triplon peak for the case of
cuprate ladders and planes. We review possible sources of
this spectral weight, such as multiparticle contributions, the
role of spin-phonon coupling, a two-triplon plus phonon pro-
cess, and the triple resonance to the magnetic Raman re-
sponse. We deduced from our results that the high-energy
spectral weight cannot be explained with realistic values for
the spin-phonon coupling.

In summary, our calculations lead to an unified under-
standing of the magnetic Raman response in cuprate ladder
compounds within a purely magnetic model. A strong spin-
phonon coupling can be excluded for these materials. Addi-
tionally, we obtained a convincing quantitative description of
the dominating two-magnon peak in the Raman response of
cuprate planes using a toy model consisting of two un-
coupled two-leg ladders. This suggests that the short-range
triplon excitations might be an alternative starting point for
the description of the two-dimensional cuprate compounds.
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