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Different Routes to Spin Gaps: Role of Orbital Ordering
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In many quantum spin systems, especially in low-dimensional ones, there exist states
with spins forming singlets and with spin gaps. I consider several situations in which one
gets such a state, paying main attention to the role of orbital occupation and orbital ordering.
In particular, orbital ordering can reduce the effective dimensionality of the system and can
lead to a Peierls-like state with the spin gap. It can also strongly influence the features
of insulator-metal transitions in transition metal compounds, and can effectively remove
frustrations in geometrically frustrated systems.

§1. Introduction

In many spin systems there appears states with spin gap. There exist different
situations in which one gets such states: these may be spin dimers; Haldane spin-one
chains (or more generally chains with even spin); even-leg spin ladders, etc. Often
the appearance of a spin-gap state coincides with the phase transition to a new phase.
Such is the situation in the well-known spin-Peierls transitions, e.g. in CuGeO3

1)

or in TiOCl.2) The details of electronic structure of corresponding materials, in
particular of their orbital occupation, play often crucial role in determining the
features of corresponding transitions.

In this short article I will consider several situations in which one gets spin-gap
states. Special attention will be paid to the role of orbital occupation and orbital
ordering in these phenomena.

§2. Basic considerations

The most typical situation for the formation of spin-gap states is met in quasi-
one-dimensional systems. The simplest phenomenon leading to a spin-gap state is a
Peierls transition, e.g. dimerization in case of a half-filled band. It can occur even
in systems with weakly interacting electrons, and the resulting dimerized state may
be simply treated as a band insulator, with the gap simultaneously present in both
the charge and spin channels. We usually do not use in this case the terminology
“spin gap”.

Similar phenomenon can occur also in case of intermediate or strong electron
correlations. In this opposite limit we are dealing with Mott insulators, electrons
are localized and behave as localized spins, often with an antiferromagnetic exchange
interaction. In this case also the resulting antiferromagnetic Heisenberg chain can be
unstable with respect to dimerization. Especially strong is this tendency for S = 1

2
ions: in this case indeed we gain large singlet energy when we make a dimerization.
Very crudely one can understand this tendency by comparing energies of the simplest
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competing states. For S = 1
2 the first is a state with well-formed singlet pairs, with

the wave function 1√
2
(1 ↑ 2 ↓ −1 ↓ 2 ↑), which are decoupled from one another:

Esingl/N = −3
8
J, (2.1)

where N is the number of sites and J is the Heisenberg exchange constant (extra
factor 1

2 in the right-hand side in 2.1 comes from the fact that only half of the
bonds have singlet pairs). The competing state is the state with eventual long-range
magnetic order, which may appear in a quasi-1d system with the intrachain exchange
interaction J and the weaker interchain exchange J ′. In the simplest case the energy
of such a state (we take a conventional Néel ordering) is

ENéel/N = −1
4
J − 1

4
J ′ (z − 2)

2
, (2.2)

where z is the total number of nearest neighbours, and consequently (z − 2) is
the number of neighbours in neigbouring chains (we assume here a nonfrustrated
situation). Comparing 2.1 with 2.2, we see that the dimerized Peierls singlet state
can be favourable for weak interchain coupling J ′.

This trivial and well-known exercise is presented here to illustrate two points.
When we generalize it for the case of arbitrary spin S (we mostly mean here half-
integer spins; for integer spins we have a Haldane situation, and generally speaking
the system does not has to have an instability towards dimerization), we get, instead
of (2.1) and (2.2):

Esingl/N = −1
2
JS(S + 1), (2.3)

ENéel/N = −JS2 − J ′S2 (z − 2)
2

. (2.4)

By comparing Eqs. (2.3) and (2.4) we immediately see that the tendency for the for-
mation of a spin-gap state is strongly suppressed for larger values of spin: this crude
estimate would give that the dimerized state would become unfavourable already for
S ≥ 1 even for isolated chains. This is of course highly exaggerated, such a crude
treatment ignores many important factors, but the tendency is caught correctly: in-
deed the systems with S > 1

2 are more robust and have much weaker tendency to
form spin singlets – they rather prefer to make long-range magnetic ordering, if it is
not prevented by special factors such as frustrations. This can be seen for example by
comparing VO2 with V2O3: both these systems have insulator-metal transitions, but
VO2 with V4+ (d1, S = 1

2) in the insulating phase has a diamagnetic (spin-singlet)
ground state, whereas V2O3 with V3+ (d2, S = 1) is antiferromagnetically-ordered,
see e.g. Ref. 3). Thus, when we observe a spin-gap state in a system with S > 1

2 , one
often has to think hard to understand what is the reason for that. A good example
is provided by the system Tl2Ru2O7 with the low-spin Ru4+ (S = 1), for which a
spin-gap state appears below Tc=120 K.4) Another such example is La4Ru2O10, also
with Ru4+ (S = 1), which has spin gap below Tc=160 K,5) see also below.

Another lesson we can learn from this simple exercise is that in such low-
dimensional systems it is favourable for the gap formation to have larger electron
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wave function overlap and consequently larger exchange J along the chain, with as
small interchain coupling J ′ as possible. This we can achieve in particular by using
orbital degrees of freedom often present in real materials; this is the main topic of
the present paper. Another message is that there are much higher chances to get a
spin-singlet state in frustrated systems, where the competing state with long range
ordering has smaller energy gain.

§3. Orbitally-driven Peierls states

In systems with one-dimensional chains existing due to the very crystal structure
of a material, one only has to worry that the coupling between chains is sufficiently
weak. This is apparently the case in some organic materials, and in the first inorganic
spin-Peierls system CuGeO3.1) This is also the case in another such system TiOCl,2)

although in this case frustrations in the interchain interaction can also play some role.
In the latter case an orbital occupation of one t2g-electron of Ti3+ is such that the
corresponding orbitals strongly overlap along the chains but much weaker between
them.6) Thus the orbital occupation apparently helps to make TiOCl essentially
one-dimensional, despite the fact that the crystal structure rather consists of two-
dimensional corrugated planes.

Much more interesting are situations in which we “create” 1d-chains in appar-
ently 3d-material by using orbital degrees of freedom. One of the oldest materials
of this type, many details of the physics of which however were revealed only re-
cently, is the famous system VO2,3),7) in which there occurs a sharp insulator-metal
transition at ∼ 70◦C, below which there appears a spin-gap state. The apparent
origin of this spin gap was known long ago: it originates from the formation of V-
V pairs (V4+ ions have a configuration d1, S = 1

2) along the c-axis in the original
rutile structure of VO2. But only recently was it established that there occurs a
significant orbital repopulation in VO2 below Tc, although the basic idea was al-
ready put forth by Goodenough long ago.8) In the high-temperature metallic phase
of VO2 all three t2g-orbitals are almost equally populated, and the properties of
this system, e.g. electrical conductivity, are rather isotropic. However below Tc

one d-electron of V occupies predominantly an orbital directed towards neighbour-
ing V’s along the c-chain. This was firmly established theoretically only recently
by LDA+U9) and LDA+DMFT10) calculations and was proven experimentally in
Ref. 11). Thus this orbital reorientation makes electronic structure of VO2 below
Tc quasi-one-dimensional and facilitates dimerization and formation of the spin-gap
state. Apparently it also strongly influences the very insulator-metal transition in
this system.

Such strong orbital reorientation is apparently instrumental also in the insulator-
metal transitions with the spin-gap formation in two other systems: in spinels
MgTi2O4 with Ti3+ (d1, S = 1

2)12) and in CuIr2S4 (low-spin Ir3+ (d6, S = 0) and
Ir4+ d5, S = 1

2).13) In both these systems metal-insulator transitions are accom-
panied by structural transitions from cubic to tetragonal phase and by the forma-
tion of very complicated and at first glance very puzzling superstructures: “chiral”
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Fig. 1. (a) Overlap of different t2g orbitals in the B-sublattice of spinels; (b) orbital ordering in

MgTi2O4; (c) charge and orbital ordering in CuIr2S4 (by Ref. 16)). Singlets are shown by double

lines.

structural distortions in MgTi2O4
14) and “octamer” ordering in CuIr2S4.15) These

superstructures, however, with the corresponding spin-gap formation, become ex-
tremely simple and natural16) if we look at the situation in straight Me-Me chains
in B-sublattice of spinels (there are three sets of such chains, running in (xy), (xz)
and (yz)-directions). The type of relevant orbitals in these systems is such that
one orbital, e.g. xy, has strong overlap only along xy-chains, xz-orbital — along
xz-chain, and yz — along yz-chains, see Fig. 1(a). Consequently, each of these or-
bitals gives rise to a corresponding one-dimensional band, susceptible to a Peierls
distortion. This is apparently what happens in MgTi2O4 and in CuIr2S4:16) there
appears in them an orbital ordering with tetramerization along xz- and yz-chains
(occuring in CuIr2S4 together with charge ordering), which leads to an insulating
state, with the formation of Me-Me singlet dimers, see Figs. 1(b) and (c). Here an
orbital ordering alone is in principle sufficient to open a spin gap, one even does not
have to move atoms, although of course in reality lattice would respond, so that both
these phenomena, orbital ordering and lattice distortion, occur simultaneously.

Actually the opening of a spin gap due to an orbital ordering does not necessarily
require that it occurs at the metal-insulator transition. Probably the first clear
example of such phenomenon was observed in an insulating pyroxene NaTiSi2O6.17)

In this system Ti3+ (d1, S = 1
2) ions form zigzag chains. Below the phase transition at

Tc = 210 K there apparently occurs in this system a ferro-orbital ordering such that
the occupied orbitals are all directed along one type of segments of the zigzag, see
Fig. 2. Consequently the overlap of the wave functions and the exchange interaction
will be much stronger on these bonds, which will form spin singlets.

Apparently very similar situation do we meet also in La4Ru2O10.5) Low-spin Ru



Different Routes to Spin Gaps: Role of Orbital Ordering 323

ions (d4, S = 1) also form zigzags, and strong structural distortion occurring in this
system below 160 K is accompanied (and, may be, is driven by) an orbital ordering,
after which the coupling within the pair of Ru ions becomes much stronger than with
the other neighbours.

The original interpretation suggested in Ref. 5), that at this transition each Ru
ion goes from the low-spin state S = 1 to the “ultra-low spin” nonmagnetic state
S = 0, is most probably incorrect: for that the distortion should be so strong that
the crystal field splitting of t2g-levels of Ru should exceed the on-cite Hund’s rule
coupling, which for Ru is of order 0.6 eV. This seems to be rather unlikely, and
the nature of the spin-gap state in La4Ru2O10 is most probably connected with the
formation of S = 0 dimers of two Ru ions. This picture is confirmed by the ab-initio
LDA+U calculations.18) The fact that Ru’s in this system remain S = 1 ions below
Tc, is also confirmed directly by the X-Ray absorption measurements.19)

Fig. 2. Schematic structure of Ti zigzags and

corresponding orbital ordering in pyroxene

NaTiSi2O6, by Ref. 17). Similar situation

apparently exists in La4Ru2O10.

In principle the situation in La4Ru2O10

could be somewhat more complicated
than the simple scheme described above
(which is similar to the one shown in
Fig. 2): Ru ions in fact form here a cor-
rugated two-dimensional RuO2 sheets,
and not simply 1d Ru zigzags. Thus one
has to consider also the Ru-Ru coupling
in the “third” direction, between zigzags
in such a sheet. Calculations show that
this coupling is still much weaker than
the one within strong dimers. But even
if it would not be so weak, we still
could have a spin-gap state: topologi-
cally then we would have a situation of
a two-leg spin ladder with strongly cou-
pled dimers forming rungs of the ladder
and intermediate “perpendicular” coupling – its legs. This leads us to our next topic:
spin gaps in higher-dimensional systems and eventual role of orbitals in them.

§4. Orbitals and spin gaps in higher-dimensional systems

When we want to consider spin-gap states in systems going beyond one-
dimensional chains with singlets on dimers, the first generalization is the already
mentioned spin ladders, see e.g. Ref. 20). The best-known examples are Cu2+ lad-
ders, in which one hole on Cu2+ occupies x2 − y2-orbital. There are also other
examples of such two-leg ladders, for instance CaV2O5.21) Initially experimental
data on this system were interpreted in the picture of doubly-degenerate orbitals zx,
yz of V4+ (d1, S = 1

2) being lower. However later on it was established that one
electron on each V occupies the nondegenerate xy-orbital. It is this orbital occupa-
tion which creates an effective two-leg ladder in CaV2O5,22) whose crystal structure
actually consists of depleted 2d square lattice of VO5 pyramids.
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Fig. 3. Schematic crystal structure (a) and orbital ordering (b) in LiVO2, by Ref. 24).

The next level of complexity do we meet in the system LiVO2, containing quasi-
2d triangular layers of V3+ (d2, S = 1), see Fig. 3(a). In this system V ions actually
form (111) layers in a rock-salt structure, next such layer being occupied by non-
magnetic Li. There exists in this system a first order phase transition at 460 K,
below which the susceptibility sharply drops, so that the contribution of localized
spins practically disappears.23) The explanation of this phenomenon was suggested
in Ref. 24). It was shown there that one can form in this system an orbital ordering
of t2g-orbitals with three sublattices, so that after such ordering there appears strong
antiferromagnetic coupling of three V ions on a triangle, isolated from other similar
triangles, see Fig. 3(b). As a result three spin-1 V ions on such a triangle form a
spin-singlet state, which explains the drop of susceptibility and the change of crystal
structure at the transition. Thus this system is an example of a “second level” of
spin-singlet formation: whereas in most cases spin singlets are formed on dimers,
here we have spin singlets on trimers, triangles of V3+ (S = 1). Recently similar
state was observed also in TiI2 with similar crystal and electronic structure.25)

Note that here we also have an interesting situation: an orbital ordering ap-
parently removes frustrations inherent in 2d triangular lattice. This is not the only
such example. One may notice that this is also the case in MgTi2O4 and CuIr2S4

discussed above: the metal ions there form a pyrochlore-like lattice of corner-shared
tetrahedra, which for the pure spin case would be heavily frustrated. Apparently an
orbital ordering helps to lift or at least strongly reduce these frustrations.

There exist also systems with still “higher level” of singlet formation — spin
singlets on a plaquette. Such situation is met in a material CaV4O9

26) belonging
to the same class of depleted VO2 layers as CaV2O5. The same xy-orbital occupa-
tion provides here strong antiferromagnetic interaction of four V’s sorrounding an
“empty” V site;22) these four V ions finally form a singlet state on such V4 plaquette.
Apparently for other orbital occupation the situation in both these materials would
have been much different.27)

Summarizing, I tried to illustrate in this paper that there exist different routes
to spin gaps in solids. Singlet states can be formed on dimers, on trimers and on
plaquettes. An alternative possibility is spin ladders and Haldane chains with even
spin. (I discussed in this paper mostly the static, ordered structures, and did not
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really touch upon possible spin-liquid states e.g. in frustrated systems, etc.). And in
most of the real systems showing ordered states with spin gaps, an orbital occupation
plays an important role. In many cases it is just due to orbital ordering that one
creates either the conditions favorable for making singlet dimers (as in VO2), or even
the orbital ordering itself leads to the formation of such singlets on dimers (MgTi2O4,
CuIr2O4, NaTiSi2O6, La4Ru2O10) or on triangles (LiVO2). Thus the orbital degrees
of freedom can lead, in addition to the other well-known consequences,28) also to the
formation of spin-singlet states.

I am grateful to the organizers of the Symposium on Quantum Spin Systems for
giving me the opportunity to present this material. I am also very grateful to many
coworkers with whom some of the results cited in this paper were obtained. This
work was supported by the Deutsche Forschungsgemeinschaft via SFB 608.
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