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The universal behaviour of the magnetic excitations in high-temperature superconductors is
described in a model with static stripes retaining only the localized spin degrees of freedom.
The stripes are represented by a model of coupled two-leg spin ladders. We start from the
results obtained previously by continuous unitary transformations for an isolated spin ladder. A
quantitative description of neutron scattering data is reached, using a model for a single cuprate
layer with well established values of the exchange coupling constants. The neutron resonance
peak is explained in terms of a saddle point in the dispersion of the magnetic excitations. Here
we make predictions for bilayer systems with in-phase or out-of-phase stripe correlations. The
results may serve as a guide for future experimental analyses.
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1. Introduction
The rôle of the magnetic excitations in the mechanism

of high-temperature superconductivity is still heavily de-
bated. A prerequisite for a successful understanding of
this rôle is a quantitative description of the magnetic ex-
citations themselves. For many years, however, it seemed
that different families of compounds display rather differ-
ent behaviour of their magnetic excitations.1–3) Recent
experimental evidence for a universal behaviour of the
magnetic excitations4–6) clearly indicates the relevance
of these features and calls for detailed theoretical inves-
tigations.

Phenomena In the single-layer compound
La2−xSrxCuO4 (LSCO), four incommensurate satellites
are observed in elastic neutron scattering experiments at
low temperatures. These satellites are shifted away from
the antiferromagnetic wave vector QAF = (1/2, 1/2) in
reciprocal lattice units (rlu). In the insulating phase at
low doping (p � 6%), the shift occurs along the diagonal
while it occurs parallel to the tetragonal reciprocal axes
in the superconducting phase (p � 6%).7, 8) The size
of the shift is roughly linear in the doping p for small
values of p. It saturates at about 1/8 of the Brillouin
zone for sizeable doping levels (p � 10%),8, 9) see also
Fig. 1.4 in Ref.10) These incommensurate features may
be explained in terms of the superstructure satellites of
a stripe phase (see below), which is supported by the
observation of the corresponding charge-order satellites
around the Bragg peaks in Nd-doped LSCO.11, 12)

Incommensurate magnetic excitations were observed
in LSCO also in inelastic neutron scattering (INS)
experiments.6, 13–18)

In the bilayer compound YBa2Cu3Ox (YBCOx), the
magnetic response at optimum doping is dominated be-
low Tc by the resonance peak at QAF with an energy
of ωres ≈ 41 meV.1, 3, 19) The observation of a resonance
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peak at QAF below Tc with ωres ≈ 47 meV in single layer
Tl2Ba2CuOy

20) shows that the bilayer structure is not a
prerequisite for the occurrence of the resonance peak. In-
commensurate branches have been observed at low ener-
gies in the underdoped regime and more recently also at
about optimal doping.21–25) Elastic superstructure satel-
lites indicating charge order were also reported in under-
doped YBCO,26) suggesting that also this system may
display an instability towards stripe formation. A third
feature is the appearance of incommensurate branches
above the resonance energy.21, 23–26)

Universality The data for YBCO provide evidence
that the resonance peak and the incommensurate excita-
tions are not separate features but form part of the com-
mon dispersive magnetic excitations of the cuprate high-
temperature superconductors. Very recently, this point of
view has been substantiated by reports on very similar
INS data obtained on YBCO6.6

4) and La15/8Ba1/8CuO4

(LBCO),5) both at low and at high energies in a large
part of the Brillouin zone. On the one hand, the ex-
periment of Tranquada and co-workers on LBCO5) pro-
vides data for a charge-ordered phase which suppresses
the superconducting phase.27, 28) The data show the in-
commensurate excitations which are familiar in the La
family. Additionally, a dominant feature is observed at
QAF, which is the first report of such a resonance in this
family. In contrast to YBCO, the resonance in LBCO is
observed in the normal (charge-ordered) state. On the
other hand, the experiment by Hayden and co-workers
for YBCO6.6 displays very similar features.4) Yet the
system is in the superconducting state. Recently, Chris-
tensen et al. pointed out the similarity of the dispersion
in the superconducting phases of optimally doped LSCO
and YBCO.6)

These findings suggest that the magnetic excitations
in the high-Tc cuprate superconductors are of universal
character. Differences may stem from the differences in
the state of the charges. The absence of a resonance peak
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in LSCO may be explained by the position of the reso-
nance mode with respect to the particle-hole continuum.
If the decay into particle-hole pairs is fast the magnetic
modes may be overdamped so that they are not seen in
experiment as prominent peaks.29, 30) In fact, the incom-
mensurate magnetic excitations in LSCO become much
sharper upon cooling.14, 15)

Modulated Phases An appealing route to account
for the important features of the magnetic excitations
sketched above is to assume a certain long-range charge
modulation. This implies a corresponding superstruc-
ture in the spin sector which in turn leads to period-
icities different from those of the underlying lattice. The
most prominent modulation considered is the formation
of stripes. It was proposed theoretically in the late eight-
ies31, 32) on the basis of the energy gain due to bind-
ing of charges to domain walls. Later such modulations
were observed experimentally in, e.g., nickelates,33, 34)

and cuprates.11)

While there are certain cuprate systems for which the
existence of static stripes is well established, e.g., rare-
earth-doped LSCO,11, 12, 35) there are others which do
not appear to display static long-range stripes, for in-
stance optimally doped YBCO. We like to emphasize,
however, that there are theoretical predictions based on
phenomenological dimer models which show that even
very small charge modulations can have a sizeable effect
on the spin sector, e.g., inducing a significant modulation
of dimer correlations.36) So it is not excluded that certain
charge orderings eluded so far experimental observation
because of their smallness.

Recent experiments on an untwinned sample of slightly
underdoped YBCO6.85

37) have not found a significant
anisotropy in the weights of the incommensurate peaks.
The data display a certain anisotropy regarding the peak
width. Assuming that a given orthorhombic domain de-
termines the orientation of a possible stripe order these
findings do not support the existence of a static one-
dimensional stripe pattern, but they may be consis-
tent with fluctuating stripes. For a further discussion
of the physics of static or dynamic stripes we refer to
Refs.1, 10, 38, 39)

Stripe Pattern The stripe phase corresponds to
a segregation into hole-rich and hole-poor ribbons. Ex-
perimentally, a doping dependence of the periodicity
has been reported in elastic neutron scattering experi-
ments on underdoped LSCO.8, 9) The shift of the mag-
netic satellites away from QAF saturates at about 1/8
for larger doping levels (p ≈ 0.1), see e.g. Fig. 1.4 in
Ref.,10) corresponding to a spin superstructure period-
icity of 8a where a is the in-plane lattice constant. The
concomitant charge superstructure periodicity of static
stripes is found to be 4a.11, 12) This is the periodicity we
choose in our model. The spin superstructure of 8a can
be explained by, e.g., assuming that the hole-rich ribbons
form anti-phase domain walls for the spins, correspond-
ing to an effective ferromagnetic coupling between the
spins across a hole-rich stripe (see below).

In the literature, two patterns of stripe modulation are
studied. One is the site-centered pattern where the hole-
rich stripe is a chain, i.e. the width of this stripe is only

one site. Neighbouring hole-rich stripes are separated by
three hole-poor sites with localized spins, which can be
viewed as a three-leg spin ladder. This pattern is the one
that was considered mostly.1) But an attractive alter-
native is the bond-centered pattern where the hole-rich
stripe has a width of two sites. These stripes are sep-
arated by two hole-poor spin sites, corresponding to a
two-leg spin ladder (see Fig. 1). There is evidence from
band structure calculations that the bond-centered mod-
ulation is favourable.40) Moreover, the magnetic state is
more stable in the bond-centered pattern than in the site-
centered one because spin ladders with an even number
of legs are gapped41, 42) and thus stable against small
perturbations. Spin ladders with odd number of legs are
critical41, 42) and thus highly unstable against any pertur-
bation or spontaneous symmetry breaking. A quantum
Monte-Carlo study illustrates that in the bond-centered
pattern much of the fluctuations originate directly in the
spin sector while in the site-centered pattern the inter-
play between spin and charge sector is essential.43)

Another interesting piece of evidence in favour of
the bond-centered scenario can be derived from the
Fourier analysis of the modulations observed by scan-
ning tunneling microscopy (STM)44) on underdoped
Ca2−xNaxCuO2Cl2. We interpret the data here as re-
sulting from the spatial average of vertical and horizontal
stripes. A discussion of a possible truly two-dimensional
4 × 4 tiling modulation is left to future research. The
STM data show features at ±1/4 rlu, but not at 1/2
rlu. The bond-centered modulation with period 4a is in-
deed generated by a single cosine term with wave vector
2π/4a; no higher harmonics appear. In contrast, the gen-
eral site-centered modulation with period 4a is character-
ized by the fundamental and the first harmonic. Hence,
the generic site-centered modulation should display a fea-
ture also at 1/2 rlu. Thus the STM data rather support
the bond-centered scenario.
Theoretical Approaches There are many theoreti-

cal approaches to the magnetic excitations in the cuprate
superconductors.2) They can be split into two classes:
(i) Starting from an underlying fermionic model, mostly
extended Hubbard models, one has to deal with strong
interactions. The magnetic collective modes appear in
the particle-hole or particle-particle channel. In essence,
they are bound states or resonances of two fermions.2)

Widely used techniques in this field are approaches based
on random phase approximations (see e.g. Ref.45) and
references therein), and renormalization schemes (see e.g.
Refs.46–48)). The regime of strong interactions with cou-
pling constants larger than the band width is difficult to
describe reliably.
(ii) Alternatively, one may start from a bosonic model
which contains the collective modes already from the
very beginning. Then the interplay with the charge de-
grees of freedom is added by some coupling. The ap-
proaches based on spin-fermion models29, 49) or many
treatments of t-J models50, 51) are of this type. In the
very limit, the fermionic excitations are neglected, focus-
ing on the collective modes alone (see e.g. Refs.52, 53)).

In the present work we use an approach of the sec-
ond type. We discuss a spin-only Heisenberg model of
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coupled spin ladders with effective coupling parameters,
assuming that the charge degrees of freedom are inte-
grated out. Roughly speaking, the excitation energies of
the charge degrees of freedom are of the order of t while
the magnetic energies are of the order of J ≈ t/3. So
it makes sense to consider an effective magnetic model
at low energies with the faster charge degrees of freedom
being eliminated. One has to keep in mind that the decay
of the magnetic collective modes into particle-hole pairs
is neglected which will certainly play a rôle at higher en-
ergies. Neglecting this decay is well justified in the super-
conducting state where the charge excitations are mostly
gapped.

While we start from a spin-only model with long-range
stripe order our predictions are equally relevant for sys-
tems with fluctuating stripe order for not too low ener-
gies. The time scale of these fluctuations should be above
the time scale set by the inverse energy of the features
under study.

Vojta and Ulbricht54) investigated the same spin-only
model without the cyclic spin exchange (see below) by a
mean-field approach starting from dimers on the rungs
of the ladders. The description of isolated ladders is im-
proved by a local energy correction which accounts for a
part of the effect of the hard-core constraint of the exci-
tations on each dimer. The constant-energy scans in this
approach agree qualitatively with the results we obtained
for a single-layer model.55, 56)

In a phenomenological approach Vojta and Sachdev
considered also a plaquette modulation.57) From their
results they concluded that the magnetic excitations of
a plaquette modulation do not agree with the inelastic
neutron data.4, 5)

Seibold and Lorenzana performed a large-scale time-
dependent Gutzwiller calculation for a Hubbard model to
determine the magnetic excitations of a stripe phase with
charge and spin order.58) Using parameters adapted to
describe the magnetic dispersion of the undoped system
and the doping dependence of the incommensurability
they find good agreement with the inelastic neutron data
for LBCO. The similariy between their constant-energy
scans and those from spin-only approaches suggests that
the damping due to the charge degrees of freedom does
not play an essential rôle in the presence of charge and
spin order. We presume that this is due to a partial freez-
ing out of the charge degrees of freedom.
Aim of this Study and Set Up It is the aim of the

present study to extend our previous investigations based
on long-range stripe modulations in a single layer55, 56) to
bilayer cuprates such as YBCO. In addition, further re-
sults for single layers will be presented. All these results
provide valuable guiding predictions for present and fu-
ture inelastic neutron scattering experiments.

The article is set up as follows. In the next section,
Sect. 2, the model will be introduced and its theoretical
treatment will be explained. In Sect. 3 results for sin-
gle layers will be presented. In the subsequent Sect. 4,
results for two different modulation patterns in bilayers
will be shown and compared. In Sect. 5 various scans at
constant energy will be given. Finally, the conclusions
will be drawn in Sect. 6.

2. Model and Calculation

Model In the Introduction we have motivated to
consider the single-layer model sketched in Fig. 1. The
Hamiltonian H is conveniently split into an intra-ladder
part Hladder and an inter-ladder part Hinter

Hladder =
∑
i∈Γ

J⊥SL
i · SR

i + J‖(SL
i · SL

i+δy
+ SR

i · SR
i+δy

)

+ Jcyc

∑
i∈Γ

[(SL
i · SR

i )(SL
i+δy

· SR
i+δy

) (1)

+ (SL
i · SL

i+δy
)(SR

i · SR
i+δy

)− (SL
i · SR

i+δy
)(SL

i+δy
· SR

i )]

where the superscripts L and R stand for the left and
the right spin on a rung, respectively. The subscript i =
(ix, iy) denotes the rung by pointing to its center, i.e. the
mid-point between the left (L)and the right (R) spin. The
possible values are Γ = a(4Z,Z). The shift δy is given by
(0, a). The coupling between the spin ladders reads

Hinter = J ′∑
i∈Γ

SR
i · SL

i+4δx
, (2)

where δx = (a, 0). As in the previous work we consider
the isotropic spin ladder with J := J⊥ = J‖ because the
system is derived from a square lattice. The cyclic ex-
change (Jcyc) is known to be the dominant correction to
the nearest-neighbour Heisenberg spin exchange.59–61) In
the square lattice, its importance has been proposed62)

and confirmed.63, 64) Similarly, it has been proposed for
two-leg spin ladders65) and could be confirmed by the
analysis of two-triplet bound states.66, 67) We will use the
thus established value Jcyc = 0.2J⊥. Taking Jcyc into ac-
count is crucial if one aims at a quantitative agreement
with experimental data.55, 56) The effective exchange con-
stant J ′ across the hole-rich stripes depends on the state
of the eliminated charge degrees of freedom. The pres-
ence of holes substantially reduces J ′ relative to J .55)

In practice, we will fit J ′ to the experimental data;
it takes a small ferromagnetic value (J ′ < 0) of a few
percent of J .55, 56)

Next we extend the above model from a single layer
to a bilayer. We consider the two possibilities depicted
in Fig. 2. There are, of course, still other patterns which
can be considered. We focus on those in Fig. 2 due to
their high symmetry.

Denoting the spins in the second layer by the super-
scripts R’ and L’ the coupling between the two layers
reads

Hin−phase = J ip
s

∑
i∈Γ

(SL
i · SL′

i + SR
i · SR′

i ) (3)

Hout−of−phase = Joop
s

∑
i∈Γ

(SL
i · SR′

i−2δx
+ SR

i · SL′
i+2δx

).(4)

The exchange coupling J ip
s takes small antiferromag-

netic values (J ip
s > 0). It corresponds to the interlayer

exchange Js determined for the undoped parent com-
pound YBCO6

68, 69) so that it should have about the
same value. In case of YBCO6, a value of Js ≈ 0.08J has
been deduced from the observation of optical magnons at
around 70 meV68, 69) and from a comparison of the two-
magnon spectra in Raman scattering and in the optical
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Fig. 1. Sketch of the model in a single cuprate plane. Each cir-
cle stands for a copper ion, i.e. the site of a spin 1/2 or a hole.
The filled circles stand for the hole-poor regions where local-
ized spins are assumed. The empty circles stand for the hole-
rich stripes where itinerant behaviour is assumed. The spin-only
model comprises only the localized spins which form a lattice
of coupled two-leg ladders. The intraladder couplings are J‖, J⊥
and Jcyc; the interladder coupling J ′ is an effective coupling
across the charged hole-rich stripes.

conductivity.70)

In the coupling Joop
s we do not denote the small su-

perexchange processes to next-nearest neighbours. The
coupling Joop

s is an effective coupling which takes pro-
cesses into account via the eliminated site (open circles
in Fig. 2b). If there is a spin on the eliminated site there
will be a ferromagnetic contribution to Joop

s because both
adjacent spins prefer to be antiparallel to it, hence paral-
lel to each other. If the eliminated site is empty there will
be an antiferromagnetic contribution to Joop

s because the
adjacent spins can undergo exchange processes. In total,
the ferromagnetic and the antiferromagnetic contribu-
tions will partially cancel so that a small |Joop

s | < J ip
s re-

mains. Its sign is plausibly ferromagnetic since the elim-
inated site is occupied to 75% at doping 1/8. Note that
the effective coupling J ′ between adjacent ladders was
motivated in the same way.55)

Calculation: Single Layer The calculation runs in
analogy to the one that we performed previously for
the single layer.55) A perturbative continuous unitary
transformation (CUT) is performed for each ladder sep-

oop

Js

(a)

z

ip

Js

(b)

Fig. 2. Sideview of the two stripe-order patterns that we consider
in bilayer systems (view along the y direction; open and full cir-
cles as in Fig. 1). The pattern in (a) assumes that the modulation
is stacked; we will call this order in-phase. The pattern in (b) as-
sumes that the modulation is alternating (out-of-phase).

arately.71, 72) Thereby, we obtain an effective model in
terms of the elementary triplet excitations, triplons,73)

of the spin ladder. This effective model includes the one-
triplon part

∑
k,α ω

0
k t

α,†
k tαk where k is the wave vector

along the ladder and α ∈ {x, y, z} is the flavour index for
the three states of a triplon. The operator tαk stands for
the annihilation of a triplon of flavour α with momentum
k and tα,†k stands for its creation. The dispersion ω0

k has
been computed in many ways, see e.g. Refs.67, 71, 74–76) or
Fig. 2a in Ref.55)

Besides the one-triplon part the effective model for the
isolated ladder includes contributions involving two and
more triplons. We neglect them since the one-triplon con-
tribution dominates for the physically relevant param-
eters where 63% of the total spectral weight is in the
one-triplon channel.55)

The coupling between the ladders can be written with-
out a new comprehensive calculation. We apply the above
unitary transformationU to each spin component at each
site of a ladder yielding an effective observable

Sα,Ri,eff := U †Sα,Ri U

=
∑
m∈Z

am (tα,†i+mδy
+ tαi+mδy

) + . . . (5)

Sα,Li,eff = −
∑
m∈Z

am (tα,†i+mδy
+ tαi+mδy

) + . . . . (6)

Here tαi stands for the annihilation of a triplon of flavour
α on the dimer i and tα,†i stands for its creation. Consis-
tent with the above approximation, the higher contribu-
tions involving two and more triplons are neglected.

First, we will use the identities (5) and (6) to find the
transformed Hamiltonian for the interladder coupling.
This can be done replacing the product of spin compo-
nents Sαi S

α
i+4δx

by the right hand sides of Eqs. (5) and
(6) taking into account that triplon operators on differ-
ent ladders are involved. They are distinguished in real
space by the x-component of i, i.e. ix. In reciprocal space
we use h for the momentum perpendicular to the ladders
(k is the momentum along the ladders). This yields

Hinter = −J ′ ∑
h,k;α

dh,k(t
α,†
h,k + tα−h,−k)(t

α
h,k + tα,†−h,−k) (7)

where the minus sign results from the coupling of a right
spin (on rung i) to a left spin (on i+4δx). The momentum
dependence is given by

dh,k := cos(8πh) a2(k) (8)

where h is measured in rlu; the cosine term captures the
shift 4a from one ladder to the next one. The factor a(k)
is the Fourier transform of the coefficients am

a(k) =
∑
m

exp(i2πkm)am . (9)

The shape of the weight a2(k) has been illustrated in Fig.
2b in Ref.55)

The total Hamiltonian after the CUT and after the
neglect of the multi-triplon parts is

Hladder +Hinter = (10)
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h,k;α

ω0
k t

α,†
k tαk − J ′dh,k(t

α,†
h,k + tα−h,−k)(t

α
h,k + tα,†−h,−k) .

It is bilinear in the triplon creation and annihilation op-
erators so that it looks like a trivial one-particle problem.
Unfortunately, this is not the case because the triplons
are hard-core bosons. At maximum one of the three kinds
may be present on a given rung. To make analytical
progress, we exploit the fact that J ′ is small compared to
the global energy scale J . Hence the off-diagonal terms
such as tα−h,−k t

α
h,k and its hermitean conjugate are small

and so will be the errors that are introduced by neglect-
ing the hard-core constraint. If the hard-core constraint
is neglected, that means the triplons are treated as ordi-
nary bosons, the Hamiltonian (10) can be diagonalized
by a standard Bogoliubov transformation. The resulting
dispersion reads

ωh,k =
√

(ω0
k)2 − 4J ′dh,kω0

k . (11)

Note that the omission of the hard-core constraint im-
plies that there is only one mode per each momentum.
The decay into two or more modes has been neglected.
Thus we are dealing with a single-mode approximation.

At zero temperature, the dynamic structure factor
Sh,k(ω) measures at which rate the system can be ex-
cited at a given momentum h, k and frequency ω. The
excitation operator is the Fourier transform of the local
spin components

Sαh,k =
1√
N

∑
i

ei2π(kix+hiy)
(
Sα,Ri eiπh + Sα,Li e−iπh

)
(12)

where we assume that the position of a rung is given by
its center. Inserting Eqs. (5) and (6) leads to

Sαh,k = i sin(πh)a(k)(tα,†h,k + tα−h,−k) . (13)

The dynamic structure factor is the sum over all absolute
excitation amplitudes squared, that means the square of
the absolute values of the prefactors of the creation op-
erators after the Bogoliubov diagonalization. The evalu-
ation brings us to

Sh,k(ω) = sin2(πh) a2(k)
ω0
k

ωh,k
δ(ω − ωh,k) . (14)

If we add the contributions at negative frequencies pro-
portional to −δ(ω+ωh,k) we may rewrite the expression
as the imaginary part of a retarded response function

Sh,k(ω) = − 2
π

Im
sin2(πh) a2(k)ω0

k

(ω + i0+)2 − ω2
h,k

. (15)

The above formulae describe the single layer case.
Calculation: Bilayer Let us consider the in-phase

pattern first. There is an obvious reflection symmetry
between the two layers, cf. Fig. 2a. Hence the additional
degree of freedom is accounted for most easily by distin-
guishing even (σ = 1) and odd triplons (σ = −1) with
respect to the reflection. We will call this property the
parity of the mode. The additional part of the Hamilto-
nian reads

Hin−phase = (16)

J ip
s

∑
h,k,σ;α

σa2(k)(tα,†h,k,σ + tα−h,−k,σ)(t
α
h,k,σ + tα,†−h,−k,σ) .

We do not write down the remaining part of the Hamilto-
nianHladder+Hinter because it is diagonal in σ; it is given
by Eq. 10 for each value of σ separately. The resulting
dispersion depends on the parity σ,

ωip
h,k,σ =

√
(ω0
k)2 + 4a2(k)ω0

k

(
σJ ip

s − J ′ cos(8πh)
)
.

(17)
The corresponding dynamic structure factor depends on
the parity σ only via the dispersion. So Eq. (15) is still
applicable once ωh,k is replaced by ωip

h,k,σ.
Now we consider the out-of-phase pattern. There is

no obvious reflection symmetry but a combination of re-
flection and translation symmetry. Let us assume that
all the spin ladders lie in the same plane. Then the dif-
ference to the single layer calculation is the presence of
the additional ladders located between those of a single
layer. The exchange J ′ couples ladders at distance 4δx;
the exchange Joop

s couples spin ladders at distance 2δx.
Then the whole problem has become a problem in a sin-
gle plane. We can stick to the wave vector h which now
is defined in a larger interval (h ∈ [−1/4, 1/4] instead
of h ∈ [−1/8, 1/8]) because also rungs with position i
in a(2Z,Z) carry spins, not only those at a(4Z,Z). The
additional contribution in the Hamiltonian is denoted

Hout−of−phase = −Joop
s

∑
h,k;α

cos(4πh)a2(k) · (18)

·(tα,†h,k + tα−h,−k)(t
α
h,k + tα,†−h,−k) .

where the cosine factor has half the argument of the co-
sine factor in Eq. (8) because the distance bridged is only
half the one bridged by J ′. The Bogoliubov diagonaliza-
tion leads to the dispersion

ωh,k=
√

(ω0
k)2 − 4a2(k)ω0

k (Joop
s cos(4πh) + J ′ cos(8πh)) .

(19)
Equations (18) and (19) start from the doubled

Brillouin-zone interval for the transverse momentum h.
In order to compare the in-phase and the out-of-phase
patterns as closely as possible we prefer to stay with
the Brillouin-zone interval of the in-phase pattern. The
part of the branch of the out-of-phase pattern which is
located at |h| ∈ [1/8, 1/4] is folded back by the shift
h = h′ ± 1/4. The backfolded branch can be identified
with the odd one because the phase factor from a lad-
der in the lower layer to a ladder in the upper layer is
exp(4πih) = − exp(4πih′), that means there is an extra
factor −1 as it is characteristic for the odd mode. In the
dispersion, we distinguish the two branches by σ = ±1

ωoop
h,k,σ = (20)√

(ω0
k)2 − 4a2(k)ω0

k (σJoop
s cos(4πh) + J ′ cos(8πh)) .

Note that we simplified the notation by passing from h′

back to h. The corresponding dynamic structure factor
is again the same as in the single layer calculation (15)
except that ωh,k is replaced by ωoop

h,k,σ. Note that the sub-
stitution h → h ± 1/4 does not apply to the sine-factor
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Fig. 3. Plot of the dynamic structure factor S̃h,k(ω) in arbitrary
units as function of momentum and energy. Note that S̃h,k(ω)
corresponds to the sum over regions with ladders running in x
direction and regions with ladders running in y direction. The
parameters apply to LBCO at doping 1/8,5, 55) namely J = 127
meV,Jcyc/J = 0.2 and J ′ = −0.072J . The energy resolution is
6 meV; it is implemented as the imaginary part η in ω → ω+ iη
in expression (15). The momentum resolution is Δk = 0.03 rlu
which means that at a given momentum (h, k) the weight in the
square (h±Δk, k±Δk) is averaged. (Color online, gray scale in
print version.)

in the structure factor (15). This is so because the ma-
trix element to excite a local triplet depends only on the
distance between the two spins on one rung. The phase
factor between the layers does not matter.

Finally, we assume that regions with stripes running
vertically and regions with stripes running horizontally
are equally present in the samples. Hence we will display
and discuss the symmetrized data S̃h,k(ω)= (Sh,k(ω) +
Sk,h(ω))/2.

3. Single layer

Results for single layers are presented in our previous
work.55, 56) Very good agreement was obtained for realis-
tic values of the coupling parameters. In particular, it was
shown that significant cyclic exchange (Jcyc/J ≈ 0.2)
is needed to reconcile the resonance energy and the
global energy scale. In the framework of the stripe model
the resonance appears as the saddle point in a strongly
anisotropic dispersion.54, 55) The dispersion is very large
along the ladders, i.e. along the stripes, while it is small
perpendicular to them. The global energy scale is set by
the maximum of the dispersion. It can be determined
from the analysis of the dispersion itself56) or from the
analysis of the momentum-integrated structure factor.55)

For LBCO at 1/8 doping, the global energy scale is J =
127 meV and the interladder coupling is J ′ = −0.072J .
This value corresponds to the quantum critical point
where the spin-liquid gap just vanishes. The actual value
will be a little larger because there is evidence for (weak)
long-range magnetic order.28)

Using the single-layer model, the analysis for under-
doped YBCO6.6 yields J = 114 meV and the interlad-
der coupling J ′ = −0.035J .56) The significantly smaller
value of J ′ is implied by the presence of a finite spin gap.

A cut through the Brillouin zone is displayed in Fig. 3.
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Fig. 4. Plot of the dynamic structure factor S̃h,k(ω) in arbitrary
units as function of momentum and energy. Based on the single-
layer model, the parameters apply to underdoped YBCO6.6,4, 56)

namely J = 114 meV,Jcyc/J = 0.2 and J ′ = −0.035J . The plot
is to be compared with Fig. 1i in Ref.4) The resolutions are
chosen as for Fig. 3. (Color online, gray scale in print version.)

The cut runs parallel to the reciprocal axis through the
antiferromagnetic wave vector QAF = (1/2, 1/2). Both
the energy dependence and the momentum dependence
can be discerned. The values chosen are those which ap-
ply to LBCO; finite resolutions in energy and in momen-
tum are taken into account.

Around 45 meV a patch of high intensity at QAF is
clearly visible. To lower energy the intensity decreases
rapidly, becoming significant again at low energies of 10-
20 meV. There is finite intensity down to the lowest ener-
gies since the system is gapless. It is very remarkable that
the finite resolutions lead to the impression of almost ver-
tical rods of high intensity (dark (online: yellow) patches)
at the incommensurate positions (1/2, 1/2 ± 1/8). This
coincides nicely with the observations of many experi-
ments, see e.g. the generic graph discussed in Fig. 13b
in Ref.1) We emphasize that the underlying dispersion is
sine-shaped as expected, see e.g. Fig. 1 in Ref.56)

In Fig. 4 the corresponding graph is shown for a
gapped system with parameters which apply to under-
doped YBCO6.6 (Ref.4)) on the basis of the single-layer
model. The theoretical result agrees well with Fig. 1i in
Ref.4). Clearly, the resonance is dominating and there are
tails of intensity to lower energy which point to incom-
mensurate momenta. The intensity toward lower energies
is quickly decreasing both in theory and experiment. Dis-
crepancies are seen in the width of the resonance patch
which is larger in experiment. It appears also that the
shift away from QAF is experimentally lower than in our
calculation. Since the experimental result is obtained via
the subtraction of a background it cannot be excluded
that finer features are lost in experiment. Measurements
with improved resolution and signal strength will be very
interesting to elucidate further details.

4. Bilayer

Now we turn to the properties of bilayer compounds
such as YBCO. Before we present results some consider-
ations on the two patterns under study are in order. It
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Fig. 5. Dispersion of the odd (solid) and the even (dashed) mode
for the in-phase pattern as function of q, the distance to the
antiferromagnetic wave vector QAF. The thin lines show the dis-
persion perpendicular to the spin ladders; the thick lines show
the dispersion parallel to the spin ladders. The parameters are
J = 136 meV, J ip

s = 0.022J , J ′ = −0.024J and Jcyc = 0.2J ,
corresponding to Δ = 20 meV, ωeven

res = 43 meV and ωodd
res = 34

meV. The dotted line depicts the dispersion in a single layer with
J = 114 meV, J ′ = −0.035J and Jcyc = 0.2J , corresponding to
Δ = 20 meV and ωres = 34 meV. For these parameters, the
dispersion perpendicular to the ladders in the single-layer model
(not shown) is indistinguishable from the dispersion of the odd
bilayer mode (thin solid line).

is plausible that the out-of-phase pattern is energetically
favoured because the charges (the holes in the stripes)
are more evenly distributed, see Fig. 2. An even dis-
tribution lowers the long-range Coulomb potential. Evi-
dence for such interlayer correlations has been reported
on the basis of a hard x-ray diffraction study of Nd-doped
LSCO.12) There, stripes in next-nearest-neighbour lay-
ers are found in an out-of-phase arrangement. Note that
in this particular case, the nearest-neighbour layers are
probably decoupled because the stripes on adjacent lay-
ers are running in orthogonal directions due to the cou-
pling to the lattice via the tilting of the oxygen octahe-
dra.

The models for the bilayer have one additional pa-
rameter, namely the interlayer coupling. The approxi-
mate size of this coupling was discussed above follow-
ing Eq. (4). We have determined the set of coupling
parameters in the following way. We fix the cyclic ex-
change at the established value of Jcyc/J = 0.2 (see
above and Refs.63, 64, 67)). The remaining three param-
eters J , J ′ and J

ip/oop
s are determined from the experi-

mental values for the spin gap (Δ = 20 meV in YBCO6.6,
Ref.77)) and for the energy of the resonance mode in
the odd (ωodd

res ) and in the even channel (ωeven
res ). In both

channels, the resonance mode corresponds to a saddle
point in the two-dimensional, anisotropic dispersion. In
underdoped YBCO6.6 the odd resonance lies at about
ωodd

res = 34 meV.4) Unfortunately, the even resonance has
not yet been observed at this doping level. In a slightly
overdoped sample, the resonances have been observed
at ωeven

res = 43 meV and ωodd
res = 36 meV.78) Since the

value of the odd resonance is very similar to the result
for YBCO6.6, we assume that also the even resonance is
similar and choose ωeven

res = 43 meV and ωodd
res = 34 meV.
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Fig. 6. Dispersion of the odd (solid) and the even (dashed) mode
for the out-of-phase pattern as function of q as in Fig. 5. The
parameters are J = 126 meV, Joop

s = −0.026J , J ′ = −0.040J
and Jcyc = 0.2J .

The resulting set of coupling parameters reads J =
136 meV, J ip

s = 0.022J and J ′ = −0.024J for the in-
phase pattern and J = 126 meV, Joop

s = −0.026J and
J ′ = −0.040J for the out-of-phase pattern. These two
sets will be used in all the plots shown in the following.
First, we note that J ip

s is indeed antiferromagnetic and
Joop
s is ferromagnetic. Second, the absolute value of J ip

s

is fairly small, much smaller than the interlayer coupling
in undoped YBCO6 of 0.08J . This is another indication
that the out-of-phase pattern is more realistic.

Note that J and J ′ do not change much in the bi-
layer analyses with respect to the single layer model. The
parameter sets all are in an experimentally reasonable
range.

In Fig. 5 the dispersions for a single layer and for
the bilayer with in-phase pattern are shown. The low-
lying dispersion perpendicular to the spin ladders is (al-
most) the same for the odd mode and for the single layer.
This fact corroborates the often made statement that the
physics of the odd mode in the bilayer is well described
in a model of a single layer. But this does not hold for the
dispersion parallel to the spin ladders where the single-
layer model implies a significantly lower maximum value.
This results from the larger energy scale J = 136 meV
(instead of 114 meV) needed to meet the resonance en-
ergies and the spin gap. The calculated dispersion of the
odd mode appears to be steeper than observed exper-
imentally,4) but this will have to be clarified by more
detailed experiments.

It is striking that the odd and the even mode energies
are almost identical above the resonance energies, i.e.
above ≈ 50 meV. This can be attributed to the weight
factor a2(k) in Eq. 17, which suppresses the difference
between the even and the odd mode for small momenta
k (see Fig. 2b in Ref.55)). At low energies, i.e., k ≈ 0.5 rlu
parallel to the ladders, the coupling between the layers
leads to the expected splitting of the two modes.

In Fig. 6, the dispersions for the bilayer with out-of-
phase pattern are shown. Again, the odd and the even
dispersion almost coincide at energies above the reso-
nances (saddle points). The total dispersion is lower than
the one for the in-phase pattern in Fig. 5 but still higher
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Fig. 7. Plots of the dynamic structure factor S̃h,k(ω) (15) for the
coupling values as in Figs. 5 and 6. The resolutions in energy
and momentum are those used also in Fig. 3. (Color online, gray
scale in print version.)

than in the single-layer model.
At low energies, the behaviour of the dispersion per-

pendicular to the ladders is remarkable. It is not just a
splitting but the dispersion of one mode can be obtained
from the dispersion of the other mode by a translation
by 1/4 rlu perpendicular to the ladders. This is obvious
in view of the derivation of the dispersions from the com-
mon expression (19). If the dispersion of the even mode
can be detected, our predictions in Figs. 5 and 6 will al-
low to distinguish both correlation patterns clearly. The
observation of a splitting at (1/2, 1/2± 1/8) would sup-
port the in-phase pattern; the absence of such a splitting
would corroborate the out-of-phase scenario. Note that
in the out-of-phase pattern both modes have the same
minimum energy, i.e. the same spin gap.

Another very noteworthy observation concerns the po-
sition where the minimum energy is reached. In spite
of the underlying commensurate charge modulation, the
spin gap is not reached at q = ±1/8 but at a smaller
value (in the odd channel). This results from the sum of
the two cosine-terms under the square root in the dis-
persion (20). Clearly, this effect will be enhanced if Joop

s

increases relative to J ′. It opens up the possibility to
vary the incommensurability continuously without any
change in the periodicity of the charge modulation. This
may give rise to a difference in the saturation value of
the incommensurability between single layer and bilayer
compounds. Such a difference has been discussed in the
literature (LSCO:9) ≈ 1/8; YBCO:79) ≈ 1/10). Note,
however, that the determination of the incommensura-
bility may be hampered by the asymmetric distribution
of the spectral weight (see below).

The Figs. 5 and 6 do not provide information on the in-
tensities. This experimentally crucial information is dis-
played in Fig. 7. The resonance at QAF is dominating
in all four plots. The intensity decreases significantly to-
wards lower energies. The response of the odd modes is
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Fig. 8. Constant-energy scans for the single-layer model. The en-

ergies and the energy resolutions are given in the figure. There
is no broadening in momentum space which must be kept in
mind when comparing to experimental data.4) The couplings are
J = 114 meV,Jcyc/J = 0.2 and J ′ = −0.035J .56) (Color online,
gray scale in print version.)

fairly similar to the response in a single layer (see Fig. 4),
in particular the response for the in-phase pattern. For
the out-of-phase pattern, the odd response displays the
interesting feature that the resonance is lower in energy
than the local maxima of the dispersion at k = 1/2±1/4.

By construction, the resonance of the even modes lies
higher in energy. For the in-phase pattern the whole re-
sponse is located at higher energies than in the odd chan-
nel. For the out-of-phase pattern this is not true. There,
the intensity of the even mode reaches down to the spin-
gap energy of the odd channel. Opposite to the behaviour
of the odd dispersion, the local maxima at k = 1/2±1/4
in the even channel are located at lower energies than
the even resonance itself.

The results for the odd mode are certainly consis-
tent with the available experimental data. Our spin-only
model, however, predicts almost the same intensities for
the even and the odd modes. This is at odds with exper-
iment where it seems to be extremely difficult to detect
the even mode at all. We presume that the energetically
higher lying even modes are affected more strongly by
damping effects, for instance due to the eliminated charge
degrees of freedom and due to the hard-core triplon-
triplon interaction. A strong damping may hinder the
experimental observability significantly. This issue cer-
tainly calls for further theoretical investigations. How-
ever, the damping should be less important at low en-
ergies. Thus detailed experimental investigations of the
spin gap in the even channel appear very promising.

5. Constant-Energy Scans

The observations made in the previous section are sup-
ported by constant-energy scans. For comparison we in-
clude in Fig. 8 four scans for a single layer. The ener-
gies and the energy resolutions chosen correspond to the
experimental ones.4) The scan at 24 meV is very close
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Fig. 9. Constant-energy scans for the odd mode in the in-phase
bilayer model. The parameters are J = 136 meV, J ip

s = 0.022J ,
J ′ = −0.024J and Jcyc = 0.2J . (Color online, gray scale in print
version.)
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Fig. 10. Constant-energy scans for the even mode in the in-phase
bilayer model. Parameters are the same as for Fig. 9. (Color
online, gray scale in print version.)

to the spin gap, i.e. the lower bound of the magnetic
excitations. The scan at 34 meV provides data at the
resonance energy which corresponds to the saddle point
of the dispersion.55, 56) The two remaining scans provide
information at energies above the saddle point.

The theoretical results agree very well with the exper-
imental findings.4) In particular, one has a diamond-like
shape at low energies of four incommensurate satellites
which merge at the resonance energy to an almost circu-
lar single patch at QAF. Note that already at 24 meV the
peak intensity has shifted towards QAF, which may blur
the precise value of the incommensurability in the anal-
ysis of experimental data. Above the resonance energy
the shape is square-like with maxima of the intensity at
the corners. The theoretical result at higher energies dis-
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Fig. 11. Constant-energy scans for the odd mode in the out-of-
phase bilayer model. The parameters are J = 126 meV, Joop

s =
−0.026J , J ′ = −0.040J and Jcyc = 0.2J . (Color online, gray
scale in print version.)
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plays a very low intensity at QAF while the experiment
shows squares with non-negligible intensity inside. Fur-
thermore, the tails of intensity outside the squares are
only very vaguely seen in experiment. We attribute both
features to multi-triplon contributions and life-time ef-
fects55) which we neglected in our approach. But in view
of the simplicity of the model, the agreement obtained is
remarkable.

In Fig. 9 the same scans are depicted for the odd
triplon in the in-phase pattern. Qualitatively, these plots
are identical to the ones for the single layer in Fig. 8.
At low energies this is even true on a quantitative level
which can be taken as an argument that a single-layer
calculation captures a significant portion of the physics
of the odd modes in a bilayer system. At higher energies,
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however, the structures are narrower (i.e. closer to QAF)
in the bilayer due to the larger value of J , as mentioned
in the discussion of the dispersion shown in Fig. 5.

In Fig. 10 the scans for the even mode are shown. At
high energies they are almost identical to those for the
odd mode in Fig. 9. The most striking differences oc-
cur at low energies where the intensities are much lower.
Note that the scan at 24 meV runs below the spin gap of
the even mode, the finite intensity is caused only by the
broadening. The scans for the odd and the even mode at
34 meV differ decisively because only in the former case
the saddle point is hit. This explains the differences in
shape and in maximum intensity.

The results for the out-of-phase pattern are presented
in Figs. 11 and 12. Again, the odd and the even response
are almost identical at high energies while they differ at
lower energies. The most striking difference is whether
the resonant saddle point is hit (at 34 meV for the odd
mode) or not (at 34 meV for the even mode). Very inter-
esting is the situation at 24 meV. In the in-phase pattern
(see Figs. 9 and 10) the even mode and the odd mode
yield the same shape but the intensity differs by a fac-
tor of 5. In the out-of-phase pattern there is no signifi-
cant difference in the intensities between the odd and the
even result. But a closer look reveals that the diamond
in the odd channel is smaller than the one in the even
channel (see also the dispersion in Fig. 6). This results
from the fact that in spite of the given charge modula-
tion the position of the minima depends on the ratio of
the prefactors of the two cosine-terms in the dispersion
(20), in particular on the sign of this ratio. For ferro-
magnetic Joop

s < 0 the minima in the odd channel are
closer to QAF than without interlayer coupling while the
minima in the even channel are further away from QAF.
These low energy features should be robust against the
damping by charge degrees of freedom and thus appear
as promising candidates for future experiments.

6. Conclusions

We investigated a spin-only model with stripe order in
a single layer and for two patterns in a bilayer. In the
first pattern, the stripes and hence the spin ladders are
in-phase in the two layers; in the second pattern they
are arranged out-of-phase, see Fig. 2. The patterns are
taken to be long-range in our calculation. But for systems
like YBCO we view the assumption of long-range stripe
order as an approximation to fluctuating medium-range
correlations. This approximation significantly eases the
theoretical treatment.

The calculation was done by coupling the effective
model, which was obtained previously for isolated spin
ladders with cyclic exchange by continuous unitary trans-
formations. The effective model is formulated in terms of
triplons, the elementary triplet excitations. The coupling
between the ladders is small so that the neglect of the
hard-core constraint of the triplons is justified. Thereby,
we can obtain quantitative results.

The results obtained within the single-layer model
agree very well with experimental findings, both for gap-
less5, 55) and for gapped systems.4, 56) We stress that the
coupling parameters J and Jcyc are realistic ones and

that only one parameter (J ′) has not been derived inde-
pendently from other experiments. In the gapless case we
have shown that the finite resolution in momentum and
energy leads to the impression of almost vertical rods in
the (ω, k) plane (Fig. 3), very much like what is seen in
many experiments. In the gapped phase, our calculation
reproduces the experimentally observed rapid decrease
of intensity towards lower energies.

In the bilayer system we distinguish contributions from
the odd and from the even triplon mode. Independent
of the stripe pattern considered the result in the odd
channel resembles very much what is obtained for a single
layer. This finding confirms the often used assumption
that a model with a single layer suffices to capture the
physics in the odd channel of the bilayer system. The
agreement between odd channel and single-layer results
is almost quantitative for the in-phase stripe correlations,
at least at low energies. For the out-of-phase pattern,
the odd mode dispersion does not have its minimum at
(1/2, 1/2 ± δ) with δ = 1/8, but at smaller values δ <
1/8. So we have discovered a way to reconcile values of
δ different from 1/8 with a charge correlation dominated
by the periodicity 4a.

The even modes behave almost quantitatively like the
odd modes at energies higher than the resonance ener-
gies. At energies of the order of the resonance energies
the even and odd modes split. In the in-phase pattern
this splitting does not depend on the momentum h per-
pendicular to the ladders. In the out-of-phase pattern,
however, the even mode dispersion and the odd mode
dispersion can be derived from each other by a transla-
tion by 1/4 rlu perpendicular to the stripes. This implies
that both modes have the same spin gap, that means
the intensity of the even modes reaches also down to low
energies. Furthermore, we predict that the even mode
displays a larger shift in the position of its minima lo-
cated at (1/2, 1/2± δ) with δ > 1/8. These predictions
can be tested experimentally if the even mode can be
observed.

One serious discrepancy between theory and experi-
ment arises from the relative intensities of the even and
the odd modes. The even mode is hardly seen in ex-
periment. So far it is only seen in the undoped parent
compound YBCO6

68, 69) and in a slightly overdoped, Ca
substituted sample Y0.9Ca0.1Ba2Cu3O7.78) In the lat-
ter sample the intensity is reduced by a factor of 3
with respect to the odd mode whereas our calculation
implies that the reduction in intensity should only be
about 20%. This discrepancy can possibly be attributed
to the stronger damping that the even mode experiences
because it lies at higher energy. A significant damping
broadens the response so that it becomes difficult to dis-
tinguish from the omnipresent backgrounds, thus the sig-
nal is lost. The damping might be due to (i) the elim-
inated charge degrees of freedom, (ii) the hard-core in-
teraction between the triplons or (iii) multi-triplon con-
tributions. The issue which processes are the important
ones must be left to future research.

In this context one may also speculate about a possible
doping dependence of ωeven

res . Experimentally, it has been
established that the odd resonance shifts to lower ener-
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gies with decreasing doping.3) Assuming that this shift
is at least partly caused by an increase of the modulus
of the interlayer coupling J

ip/oop
s , it corresponds to an

increase of ωeven
res with decreasing doping, and thus also

to an increased damping of the even mode.
We advocate the out-of-phase pattern as the more

likely candidate to describe the relevant bilayer correla-
tions. First, the concomitant charge distribution is more
even, so the Coulomb interaction favours the out-of-
phase pattern. Second, the small value of the interlayer
coupling of about 2-3% of J (compared to 8% in the un-
doped parent compound) is indicative that it is not the
direct exchange from one layer to the other as in Fig. 2a
which is responsible for the interlayer coupling. For the
out-of-phase pattern shown in Fig. 2b it is natural to as-
sume that the (absolute) value of Joop

s is small. Third, it
is appealing to attribute values of the incommensurabil-
ity different from 1/8 to the tunable incommensurability
in the out-of-phase pattern.

It is remarkable to which extent the straightforward
model of coupled spin ladders describes the emerg-
ing universal behaviour of the magnetic excitations in
high-temperature superconducting cuprates. This is even
more fascinating in view of the fact that static stripes are
not supported by experiment37) and of the tendency to
form more two-dimensional tiling patterns, at least at
the surfaces.44, 80) We think that the universal behaviour
of the magnetic excitations may be explained by assum-
ing that on a medium-range of 4 to 8 lattice spacings
the correlations are similar to those of stripes. It is plau-
sible that our results for not too low energies remain
qualitatively valid for such a system with medium-range
stripe correlations. Definitely, more work is called for to
improve the theoretical description further.

Equally, further high-resolution neutron experiments
are desirable in order to test the predictions made in the
present work. This will provide deeper insight in the com-
plex physics of the elementary excitations of the cuprate
superconductors.
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