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The key feature of an orbital wave or orbiton is a significant dispersion, which arises from exchange
interactions between orbitals on distinct sites. We study the effect of a coupling between orbitons and phonons
in one dimension using continuous unitary transformations. Already for intermediate values of the coupling,
the orbiton band width is strongly reduced and the spectral density is dominated by an orbiton-phonon con-
tinuum. However, we find sharp features within the continuum and an orbiton-phonon antibound state above.
Both show a significant dispersion and should be observable experimentally.
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I. INTRODUCTION

In correlated electron systems, orbital degeneracy is dis-
cussed as an interesting source for very rich physics.1–3 The
orbital degeneracy may be lifted by a coupling to phonons4

and/or by superexchange processes.5 The latter give rise to
an intimate connection between spin and orbital degrees of
freedom. Spin-orbital models predict interesting ground
states such as orbital order or quantum-disordered orbital-
liquid states, and one may expect novel elementary excita-
tions: dispersive low-energy orbital waves termed orbitons.6

Experimentally, the observation of orbitons has been claimed
on the basis of Raman data of the orbitally ordered com-
pounds LaMnO3 �Ref. 7� and RVO3 �R=La, Nd, Y�.8,9 In
LaMnO3, the bosonic orbitons are treated similarly to mag-
nons in a long-range spin-ordered state, whereas the orbital
excitations of RVO3 are discussed in terms of one-
dimensional �1D� fermions equivalent to the spinons of a 1D
Heisenberg chain.6–8

The role attributed to phonons varies largely. For the case
of LaMnO3, it has been argued that the orbiton-phonon cou-
pling constant g is small, only giving rise to a small shift of
the orbiton band.6,7 The dynamical screening of orbitons by
phonons and the mixed orbiton-phonon character of the true
eigenmodes have been studied by van den Brink10 using self-
consistent second order perturbation theory �SOPT� in the
orbiton-phonon coupling g. He interpreted the Raman peaks
observed at about 160 meV in LaMnO3 �Ref. 7� in terms of
phonon satellites of the orbiton band, assuming weak cou-
pling g. In contrast, Allen and Perebeinos11 argued that the
coupling g is so strong that the eigenmodes can be described
in terms of local crystal-field excitations �“vibrons”�. Then,
the spectral density consists of a series of phonon sidebands
�Franck-Condon effect� with a center frequency �1 eV.11

Experimentally, the orbiton interpretation of the Raman fea-
tures observed at about 160 meV in LaMnO3 has been
strongly questioned based on the comparison with infrared
data,12,13 which clearly indicate that these features should be
interpreted in terms of multiphonons.

The “nonlocal” collective character of the orbital excita-
tions is relevant if the energy scale of the superexchange is
larger than the coupling to the phonons. At present, a sys-

tematically controlled quantitative description of the gradual
transition from well-defined dispersive orbitons at g=0 to
predominantly “local” crystal-field excitations for strong
coupling is still lacking. The SOPT treatment is valid at
small g. Qualitatively, it shows �i� a polaronic reduction of
the orbiton band width10 due to the dressing of the orbiton by
a phonon cloud yielding a heavy quasiparticle and �ii� a
transfer of spectral weight from the orbiton band to phonon
sidebands, i.e., to a broad and featureless orbiton-phonon
continuum �see below�. This suggests that signatures of col-
lective behavior are rapidly washed out with increasing g.

We perform a well-controlled calculation of the spectral
line shape of the orbitons at larger values of g which eluci-
dates the collective character of the excitations. Our study is
based on continuous unitary transformations14–16 �CUTs� re-
alized in a self-similar manner17 in real space.18 For clarity
and simplicity, we restrict ourselves to the minimal model in
one spatial dimension �1D�. We find that well-defined, dis-
persive features appear in the orbiton-plus-one-phonon con-
tinuum for intermediate values of g. Additionally, a sharp
orbiton-phonon antibound state �ABS� is formed above the
continuum. Both phenomena should allow us to observe dis-
persive signatures of orbitons in experiment.

II. MODEL

We study the following Hamiltonian in one dimension

H0 = �
i

��orb
ex + �orb

JT �ci
†ci −

J

4�
i

�ci+1
† ci + ci−1

† ci�

+ �ph�
i

bi
†bi + 2g�

i

ci
†ci�bi

† + bi� , �1�

where c and b are bosonic operators that represent orbitons
and phonons, respectively, �orb

ex and �orb
JT =4g2 /�ph denote the

contributions to the local orbiton energy from superexchange
and from a static Jahn-Teller deformation,10 J the superex-
change coupling constant, �ph the phonon energy, and g the
coupling between orbitons and phonons. The Jahn-Teller en-
ergy �orb

JT =4g2 /�ph results from the static distortion of the
local environment of the transition-metal ion with orbital de-
generacy. This distortion lifts the degeneracy such that the
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orbitals are split into a low-lying orbital termed ground state
orbital and a higher-lying one. The orbital excitation consists
of lifting an electron from the ground state orbital into the
higher-lying one. This is the effect of the creation operator
c†. The superexchange J acts as a hopping amplitude of the
orbiton, giving rise to a dispersion.

The Hamiltonian �1� is the bosonic version of the well-
investigated 1D Holstein model of coupled electrons and
phonons yielding polarons, see, e.g., Refs. 19 and 20. At
T=0, Eq. �1� can be studied with a single orbiton so that its
statistics does not matter and the fermionic and the bosonic
model are equivalent.

The dynamic orbiton-phonon interaction �last term in Eq.
�1�� corresponds to the creation or annihilation of a local
distortive phonon if an orbiton is present. This is qualita-
tively the most important term linking the orbiton and the
phonon degrees of freedom because it represents an interac-
tion of one orbiton with one phonon. Of course, a hybridiza-
tion term linear in both the operators of the orbiton and of
the phonon will also be present. The hybridization makes
orbital effects visible in the phonon channel and vice versa.
This fact is important for assessing the possibility to observe
phonons or orbitons by certain experimental probes. How-
ever, such a hybridization term does not change the character
of the excitations qualitatively. One may imagine that the
bilinear term has been transformed away beforehand by a
Bogoliubov diagonalization.

Compared to the complex Hamiltonian studied by van den
Brink for LaMnO3,10 our model is stripped to the minimum
by allowing only for one local �optical� phonon, by being
one dimensional, and by omitting the bilinear hybridization
term between orbitons and phonons discussed above. The
locality of the phonon ensures that all dispersive effects re-
sult from the orbital channel. We expect that our results will
also be generic for higher dimensions because we do not
focus on particular one-dimensional aspects. For example,
we consider a single orbital excitation, not a dense liquid of
excitations prone to display specific one-dimensional physics
such as Luttinger-liquid behavior. For the same reason, we
do not need to consider the formation of “biorbitons,” the
equivalent of the bipolarons studied in the context of the
Holstein model. Hence, we are convinced that our model
contains the generic features, while it is clear and simple
enough to allow for the controlled computation of line
shapes.

In the literature on the Holstein model, the crossover from
local polarons to large polarons is treated mainly by numeri-
cal techniques.19,20 The focus has been on �ph�W, where W
is the bare electron �here: orbiton� band width �in 1D W=J�,
whereas �ph�W is reasonable for the description of orbitons
in transition-metal oxides.22 Then, the continua of different
number of phonons do not overlap in energy, allowing for
the formation of bound states below the scattering states or
of antibound states above them. Our calculation elucidates
the regime �ph�W and has the merit to provide an explicit
interpretation of the features found. Thereby, the understand-
ing of the nature of the excitations is enhanced.

III. METHOD

We choose the CUT approach14–16,18 because it is an ana-
lytical approach which provides an effective model that can

be understood more easily. The CUT is defined by

�lH�l� = ���l�,H�l�� �2�

to transform H�l=0�=H0 from its initial form to an effective
Hamiltonian H��� at l=�. Here, l is a continuous running
variable which parametrizes the unitary transformation U�l�
yielding H�l�=U�l�†HU�l�. The infinitesimal anti-Hermitian
generator of the transformation is denoted by ��l�. The prop-
erties of the effective Hamiltonian depend on the choice of
the generator.

In this work, a quasiparticle-conserving CUT is used
which maps the Hamiltonian H0 to an effective Hamiltonian
H��� which conserves the number of quasiparticles.16,18 This
is suggested from the physics of our model. The free orbital
wave will be dressed by the interaction with the phononic
degrees of freedom. The elementary excitations of the inter-
acting model are orbiton excitations with a cloud of phonons
renormalizing the properties of the bare orbital waves.

The following choice for the matrix elements of the in-
finitesimal generator �

�i,j�l� = sgn�qi − qj�Hi,j�l� , �3�

in an eigenbasis of Hph=�ph�ibi
†bi is appropriate. The qi are

the eigenvalues of Hph.
16 Obviously, the flow �2� stops if

either qi=qj or Hi,j =0 for pairs of i and j. Given that there is
convergence for l→�, i.e., H��� exists, this tells us that
H��� is block diagonal, i.e., it conserves the phonon number.

The convergence is not as easy to see generally. However,
assuming an almost diagonal, nondegenerate Hamiltonian
with qi�qj ⇔Hi,i�Hj,j, the leading order in the nondiagonal
matrix elements fulfills

�lHi,j = − sgn�qi − qj��Hi,i − Hj,j�Hi,j�l� �4a�

=− �Hi,i − Hj,j�Hi,j�l� , �4b�

implying convergence according to

Hi,j 	 exp�− �Hi,i − Hj,j�l� . �5�

The general derivations of convergence are given in Refs. 16
and 21.

The commutators required for the flow �2� are computed
using the standard bosonic algebra. The truncation of the
proliferating terms in the flow equation will be discussed
below. We consider

H��� = �
i,n

Jnci+n
† ci + �ph�

i

bi
†bi

+ �
i,n1,n2

�
n1,n2
ci+n1

† ci+n2
bi

† + H.c.�

+ �
i,n1,n2,n3

Vn1,n2

n3 ci+n1

† ci+n2
bi+n3

† bi

+ �
i,nj

�2
n1,n2

n3,n4ci+n1

† ci+n2
bi+n3

† bi+n4

† bi + H.c.�

+ �
i,nj

2Vn1,n2

n3,n4,n5ci+n1

† ci+n2
bi+n3

† bi+n4

† bi+n5
bi. �6�
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The only finite amplitudes at �=0 are J0��=0�=�orb
ex +�orb

JT ,
J1��=0�=−J /4, and 
0,0��=0�=2g. The generator ���� is
chosen to be

���� = �
i,n1,n2

�
n1,n2
ci+n1

† ci+n2
bi

† − H.c.�

+ �
i,nj

�2
n1,n2

n3,n4ci+n1

† ci+n2
bi+n3

† bi+n4

† bi − H.c.� . �7�

In the following, we denote the considered truncations by
�S ,e� with the structure S� �
 ,V , 2
 , 2V� and the spatial ex-
tension e. The structure S is defined by the maximum number
of creation and annihilation operators appearing in the flow-
ing Hamiltonian, e.g., S= 2V for H��� given in Eq. �6�. The
spatial extension e is defined for a given operator
ci+n1

† ci+n2
bi+n3

†
¯bi by the distance between the leftmost and

the rightmost local operator, i.e., for e=9, only the exchange
amplitudes Jn with n� �−4;−3; . . . ;3 ;4� are finite. We con-
sidered e� �1,3 ,5 ,7 ,9� for the numerical evaluation. We
have found that e=9 and S= 2V is sufficient to obtain numeri-
cally stable, accurate results �see later, Figs. 2, 5, and 6�.

IV. RESULTS

A. Orbiton dispersion

In Fig. 1, the dispersion of the dressed orbitons is shown
for �ph=W using the truncation �2V ,e=9�. With increasing
g /W, the effective band width Weff is strongly reduced �see
inset�. The orbiton becomes dynamically dressed by a pho-
non cloud enhancing its effective mass. Already for g /W
=1/2, we find Weff /W=0.35 in CUT. In contrast, the ap-
proximate perturbative result Weff /W=0.56 obtained by
SOPT clearly underestimates the reduction of the band
width. For g /W=3/4, we find Weff /W=0.1 in CUT, a factor
of 4 smaller than in SOPT. This indicates that for g�0.75W,
the excitation may be regarded as local for practical pur-
poses, i.e., rather as a vibron than as a propagating orbiton.

The dependence of the orbiton dispersion on the trunca-
tion level is depicted in Fig. 2. The upper panel shows the
difference ���k�=��2
 ,e=9�−��2V ,e=9�, illustrating the
dependence on the structure S. Clearly, ���k� increases with

g but remains small ��� /Weff�1% � for all considered val-
ues of g. The truncation error resulting from the finite spatial
extension e of the operators is even smaller, as shown in the
lower panel of Fig. 2. This reflects the fact that the physics of
the model becomes more local with increasing g; hence, less
extended operators are sufficient to describe the orbiton dis-
persion. This is underlined by the observation that the trun-
cation error related to the extension e is smaller for g /W
=1/2 than for g /W=3/8.

B. Spectral properties

For the orbiton line shape, we transform the local orbiton
creation operator Oloc=c0

† to an effective one by the same
CUT as applied to H0. We study all terms with one orbiton
operator plus up to four phonon operators23

O��� = �
r

Arcr
† + �

r1,r2

�Br1

r2cr1

† br2

† + Cr1

r2cr1

† br2
� + ¯

+ �
rj

�Kr1

r2,r3,r4,r5cr1

† br2

† br3

† br4

† br5

† + ¯ � + H.c. �8�

Initially, the only finite value is A0��=0�=1. Finally, at T
=0, there are five types of contributions �omitting spatial
indices�: c†, c†b†, c†b†b†, c†b†b†b†, and c†b†b†b†b†. For each
type, we sum the moduli squared of all coefficients, yielding
the spectral weights given in Fig. 3.

The sum of all contributions has to equal unity. The inset
of Fig. 3 shows that the sum of the five considered contribu-
tions is very close to 1 for g /W�1/2 so that higher-order
terms are indeed not important in this parameter range. For
small values of g /W, the spectral weight resides almost en-
tirely in the fundamental orbiton band, i.e., the eigenmode is
a well-defined orbital wave. With increasing g /W, spectral
weight is transferred to the orbiton-phonon continua, which
reflects the change of the excitation character from an orbital
wave to a vibronic excitation with increasing g. Already for
g /W=1/2, the orbiton-plus-one-phonon band dominates the
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spectrum. This agrees roughly with the result obtained for
the local limit of both orbitons and phonons.10

Now, we turn to momentum �k� and frequency ��� re-
solved spectral properties. The k-resolved spectral weights of
the dressed orbiton and of the orbiton-plus-one-phonon con-
tinuum are plotted in Fig. 4. The dependence of these two
quantities on the truncation level is illustrated in Figs. 5 and
6. Again, the differences between different truncations are
small for all considered values of g. As mentioned above, the
physics becomes more local with increasing g, explaining the
larger sensitivity on the spatial extension observed for g /W
=1/8.

The corresponding k-resolved spectral densities are shown
in Fig. 7. The transfer of spectral weight away from the
orbiton band is largest at the Brillouin zone boundary, see
top panel of Fig. 4, where the orbiton band is energetically
close to the continuum, see Fig. 7�a�. For small values of
g /W, the spectral weight “leaks” into the continuum where it
appears as a broad hump. For g /W=1/8, the results of SOPT
and CUT for the line shape and the spectral weight still agree
well with each other, see Fig. 7�a�. With increasing g /W, the

effective orbiton band width Weff is reduced so that the sepa-
ration between the orbiton band and the orbiton-plus-one-
phonon continuum increases. At the same time, a sharp reso-
nance appears within the continuum, displaying a clear
dispersion.

For g /W=1/2, the orbiton-plus-one-phonon sector domi-
nates the spectrum, see Fig. 3. Its spectral weight is almost
independent of k, in contrast to the behavior observed for
smaller values of g /W, see bottom panel of Fig. 4. The rela-
tive suppression of the orbiton-plus-one-phonon continuum
close to the Brillouin zone boundary reflects the transfer of
spectral weight to the orbiton-plus-two-phonon continuum.
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C. Antibound state

Interestingly, a very sharp dispersive feature is pushed out
of the continuum to higher energies. Because it is built from
states with one orbiton and one phonon and because it de-
velops from the scattering states in the continuum, but lying
at higher energies, this feature is identified as an antibound
state �ABS� of one orbiton and one phonon.

The appearance of an ABS is also found in SOPT, though
at different energies and with different weights �not
shown�.24 It occurs for all momenta and arbitrarily weak cou-
plings g due to the 1D van Hove singularities. In contrast, the
sharp resonance seen within the orbiton-phonon continuum
at intermediate couplings is totally missed by the SOPT
which stays broad and featureless, see dashed lines in Fig. 7.

For g /W=1/2, the total dispersion within the orbiton-
plus-one-phonon channel—from the peak maximum in the
continuum at k=0 to the ABS at k=−—is even larger than
the renormalized band width Weff of the orbiton band. This
surprising result indicates that the dispersion of collective
orbital excitations may very well be observed experimentally
even for intermediate values of the phonon coupling g.

The dispersion of the antibound state and of the resonance
in the orbiton-phonon continuum comes as a surprise since
we started from entirely local phonons. How can an ABS of
an orbiton and of an immobile phonon propagate? Since in
our model �1� a single orbiton cannot influence the macro-
scopic number of phonons, we can exclude that some hop-
ping amplitude of the phonons is induced by g. Hence, we
are led to the conclusion that there must be an important
momentum-dependent effective interaction between an orbi-
ton and a phonon. A pair of orbiton and phonon undergoes
correlated hopping. In the Hamiltonian H0 in Eq. �1� before
the CUT, this hopping can presumably be understood as a
virtual process where the orbiton-phonon pair is intermedi-
ately deexcited to a single orbiton which can hop.
Momentum-dependent matrix elements are certainly also
present; but they alone cannot explain the dispersion of the
ABS.

In the literature on the Holstein model, the appearance of
sharp subbands which are qualitatively similar to our results
has been reported for W significantly larger than �ph and
large values of the coupling constant.19,20 However, the iden-
tification of the antibound state by our CUT approach is es-
sential in order to understand why the dispersion in higher
subbands is larger than in the elementary orbiton �or polaron�
band.

V. SUMMARY

Our work is intended to provide information on the nature
of orbital excitations in the presence of substantial orbiton-
phonon coupling in principle. We do not aim at any particu-
lar compound. Therefore, we have concentrated on a simpli-
fied model in one dimension without hybridization or
phonon dispersion. As indicated in the discussion following
Eq. �1�, we expect that our findings also apply qualitatively
to more specific, extended models. In two or three dimen-
sions, the line shape at the band edges will change and the
antibound state will form only beyond a certain threshold of
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and the orbiton-plus-one-phonon continuum �black� for �ph/W=1
using the truncation �2V ,e=9�. An orbiton-phonon antibound state
�green/light gray� is shown where it has gained substantial weight.
�a� g /W=1/8. �b� g /W=1/4. �c� g /W=3/8. �d� g /W=1/2. The �
functions are broadened by 
=0.01W. The dashed lines depict the
orbiton-plus-one-phonon continuum in SOPT for k=−.
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the orbiton-phonon interaction. The presence of hybridiza-
tion will imply that the orbiton line shape also occurs as a
weak feature in experimental probes coupling directly to the
distortions and vice versa. Finally, a finite phonon dispersion
will contribute to the mobility of the collective states. In case
continua start to overlap, effects of finite lifetimes due to
decay will be observable. These points summarize what we
expect for the modifications of our findings in real systems.

We investigated the gradual transition from a propagating
orbital wave to a “local” vibron with increasing phonon cou-
pling g. We found already for intermediate couplings a sub-
stantial reduction of the orbiton band width. The orbiton-
phonon continuum is not a featureless hump as suggested by
second order perturbation theory �Born approximation� but
displays a relatively sharp, dispersive resonance and an anti-
bound state. For g /W=1/2, the orbiton-plus-one-phonon

sector carries more spectral weight than the orbiton itself, but
it also shows the larger dispersion. Thus, the collective char-
acter is seen rather in the orbiton-phonon sector than in the
fundamental orbiton sector. This may turn out as a major
advantage for experiments, since phonons and orbiton-plus-
phonon features appear in separate frequency ranges, facili-
tating the correct assignment. Our results demonstrate that
signatures of collective orbital excitations are not limited to
compounds in which the phonon coupling g is very small.

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with H. Fehske and
G. Khalliulin and the financial support of the DFG in SFB
608 in which this project has been started.

*kaiphillip.schmidt@epfl.ch; http://marie.epfl.ch/kpschmid
1 Y. Tokura and N. Nagaosa, Science 288, 462 �2000�.
2 D. I. Khomskii, Phys. Scr. 72, CC8 �2005�.
3 G. Khaliullin, Prog. Theor. Phys. Suppl. 160, 155 �2005�.
4 H. A. Jahn and E. Teller, Proc. R. Soc. London, Ser. A 161, 220

�1937�.
5 K. I. Kugel and D. I. Khomskii, Sov. Phys. JETP 37, 725 �1973�.
6 S. Ishihara, Y. Murakami, T. Inami, K. Ishii, J. Mizuki, K. Hirota,

S. Maekawa, and Y. Endoh, New J. Phys. 7, 119 �2005�.
7 E. Saitoh, S. Okamoto, K. T. Takahashi, K. Tobe, K. Yamamoto,

T. Kimura, S. Ishihara, S. Maekawa, and Y. Tokura, Nature
�London� 410, 180 �2001�.

8 S. Miyasaka, S. Onoda, Y. Okimoto, J. Fujioka, M. Iwama, N.
Nagaosa, and Y. Tokura, Phys. Rev. Lett. 94, 076405 �2005�.

9 S. Sugai and K. Hirota, Phys. Rev. B 73, 020409�R� �2006�.
10 J. van den Brink, Phys. Rev. Lett. 87, 217202 �2001�.
11 P. B. Allen and V. Perebeinos, Phys. Rev. Lett. 83, 4828 �1999�.
12 M. Grüninger, R. Rückamp, M. Windt, P. Reutler, C. Zobel, T.

Lorenz, A. Freimuth, and A. Revcolevschi, Nature �London�
418, 39 �2002�.

13 R. Rückamp, E. Benckiser, M. W. Haverkort, H. Roth, T. Lorenz,
A. Freimuth, L. Jongen, A. Möller, G. Meyer, P. Reutler,
B. Büchner, A. Revcolevschi, S. -W. Cheong, C. Sekar, G.

Krabbes, and M. Grüninger, New J. Phys. 7, 144 �2005�.
14 S. D. Głazek and K. G. Wilson, Phys. Rev. D 48, 5863 �1993�.
15 F. J. Wegner, Ann. Phys. �Leipzig� 3, 77 �1994�.
16 C. Knetter and G. S. Uhrig, Eur. Phys. J. B 13, 209 �2000�.
17 A. Mielke, Europhys. Lett. 40, 195 �1997�.
18 A. Reischl, E. Müller-Hartmann, and G. S. Uhrig, Phys. Rev. B

70, 245124 �2004�.
19 M. Hohenadler, M. Aichhorn, and W. von der Linden, Phys. Rev.

B 68, 184304 �2003�.
20 H. Fehske, A. Alvermann, M. Hohenadler, and G. Wellein, in

Proceedings of the International School of Physics Enrico Fermi
Course CLXI; Polarons in bulk materials and systems with re-
duced dimensionality, edited by G. Iadonisi and J. Ranninger
�IOS, Amsterdam, 2006�.

21 A. Mielke, Eur. Phys. J. B 5, 605 �1998�.
22 Oxygen bond-stretching vibrations with typically �ph	80 meV

constitute the most relevant phonon mode.
23 The number of phonon channels has been varied to verify that a

sufficiently large number of phonons is considered. This ensures
that the results do not depend much on this truncation.

24 The occurrence of the ABS at arbitrarily weak g will be specific
to one dimension. However, we expect an antibound state to
occur in all dimensions for sufficiently large orbiton-phonon in-
teraction.

SCHMIDT, GRÜNINGER, AND UHRIG PHYSICAL REVIEW B 76, 075108 �2007�

075108-6


