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Abstract. Compounds containing magnetic subsystems representing simple model spin
systems with weak magnetic coupling constants are ideal candidates to test theoretical
predictions for the generic behavior close to quantum phase transitions. We present
measurements of the thermal expansion and magnetostriction of the spin- 1

2
-chain compound

copper pyrazine dinitrate Cu(C4H4N2)(NO3)2. Of particular interest is the low-temperature
thermal expansion close to the saturation field Hc ' 13.9T, which defines a quantum phase
transition from the gapless Luttinger liquid state to the fully saturated state with a finite
excitation gap. We observe a sign change of the thermal expansion for the different ground
states, and at the quantum critical point Hc the low-temperature expansion approaches a 1/

√
T

divergence. Thus, our data agree very well with the expected quantum critical behaviour.

Copper pyrazine dinitrate Cu(C4H4N2)(NO3)2 (or CuPzN) crystallizes in an orthorhombic
structure with lattice constants a = 6.712 Å, b = 5.142 Å and c = 11.732 Å, space group
Pmna. The structure consists of linear Cu-pyrazine-Cu-chains along the a axis. [1] By zero-
field susceptibility and specific heat measurements it could be shown, that CuPzN is a S = 1/2
chain with an antiferromagnetic (AFM) intrachain exchange constant of J/kB ' 10.6 K. [2]
Recent zero-field muon-spin relaxation measurements provide evidence for long-range magnetic
order below TN ' 100 mK, which implies a ratio of interchain to intrachain coupling of J ′/J '
4.4 ·10−3. [3] This means, that the spin chains are well isolated from each other and CuPzN very
well realizes the model of a one-dimensional spin-1/2 Heisenberg chain antiferromagnet. This
theoretical model is of particular interest because it represents a so-called spin Luttinger liquid
(LL) with a continuous two-spinon excitation spectrum. For a finite magnetoelastic coupling,
however, any AFM spin-1/2 chain is expected to show a Spin-Peierls transition, which transforms
the LL to a dimerized phase with a finite excitation gap. Apparently, the magnetoelastic
coupling in CuPzN is low enough to prevent such a Spin-Peierls transition for T > TN. Because
kBTN � J , CuPzN is ideally suited for experimental studies of the LL state over a wide range of
temperature and due to the relatively low value of J it also allows one to study the magnetic-field
influence over a wide field range. The zero-temperature quantum phase transition from the LL
phase to the fully spin-polarized high-field phase with a finite spin gap is expected to occur at
H = 2J/gµB ∼ 15.8 T, which is accessible in typical superconducting laboratory magnets. On
approaching this quantum critical point, highly anomalous temperature dependencies of various
thermodynamic properties are expected [4, 5] and have been observed recently in the related
spin-1/2-ladder compound (C5H12N)2CuBr4. [6, 7, 8] In this report, we present high-resolution
measurements of the thermal expansion α(T,H) and the magnetostriction in magnetic fields up
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Figure 1. (a) Magnetostriction ε = ∆L(H)/L0 and (b) its field derivative λ = ∂ε/∂H measured
along the spin chains. (c) Determination of H

‖b
c (T = 0) via a linear extrapolation of the peak

positions (•) of λ and the points (?) where α(T,H) changes sign (see text).

to 17 T. For both zero field, as well as the quantum critical field, our data well agree with the
theoretical expectations, namely α(T,H = 0) scales with the calculated magnetic specific heat
while for the critical field it shows a power-law divergence α(T,H = Hc) ∝ −1/

√
T .

The magnetostriction and thermal expansion was measured in a home-built capacitance
dilatometer, which is attached to a 3He insert (Tmin ' 250 mK) of a 4He bath cryostat
equipped with a superconducting magnet (Hmax = 17 T). The dilatometer can be rotated with
respect to the magnetic-field axis such that the field can be aligned in any angle with respect to
the measured uniaxial length change ε(T,H) = ∆L(T,H)/L0. For magnetostriction (thermal
expansion) measurements T (H) is kept fixed while H (T ) is continuously varied. ∆L(T,H)
is measured with respect to the length at H = 0 (T = Tmin) and L0 is the total length of the
sample. The derivatives λ = ∂ε/∂H and α = ∂ε/∂T are obtained numerically. The sample
studied here is from the same batch as those used in Ref. [9]. We measured the length changes
parallel to the spin chains, i.e. parallel to the a axis, on a crystal with L0 = 2.6 mm and the
perpendicular dimensions b×c ' 0.4×0.7 mm2. The magnetic field was oriented along the b axis,
which has the largest g factor (gb = 2.27 [2]) in order to minimize the critical field H

‖b
c ' 13.9 T.

Figure 1(a) shows the magnetostriction at various temperatures as a function of field, which
strongly resembles the behaviour of the low-temperature magnetization [2]. With increasing
field the sample continuously elongates and finally reaches a plateau above the saturation
field. Qualitatively, this magnetostriction can be explained as follows: as the magnetic field
forces the spins to orient parallel, the lattice distorts in a way to decrease the AFM coupling
J . This reduces the cost in exchange energy, but causes an additional cost in elastic energy.
Because, in lowest order, the first (second) term is linear (quadratic) in the distortion, such a
magnetostriction always occurs. In the present case, J is minimized by increasing the distance
between neighboring spins, which appears rather natural, but there are also cases where the
magnetostriction has the opposite sign [11]. The uniaxial pressure dependence of J is related to
the saturation value of the magnetostriction εs(H > Hc) ' 1.2 · 10−5 via ∂J/∂pa = D−1 · εs Vfu.
Here, pa means pressure along a, D ' 0.69 is the field-induced change of the spin corellator and
Vfu ' 203 Å3 is the volume per formula unit. [7, 10] This yields ∂ lnJ/∂pa ' 2.4 %/GPa.

As shown in Figure 1(b) the field derivative λ has a rather sharp peak, which systematically
broadens and shifts towards lower field with increasing temperature. The peak positions are
plotted as a function of temperature in Figure 1(c) and a linear fit extrapolates to the zero-
temperature critical field H

‖b
c ' 13.9 T. This method to determine the QCP has already been

used in the spin-ladder system (C5H12N)2CuBr4. [7]
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Figure 2. Thermal expansion along the spin chains measured in H = 0 and H ≤ 15 T; note
the logarithmic T scale in (b). The solid line in (a) is the sum of the scaled magnetic specific
heat of a Heisenberg chain (dashed) and a phononic T 3 term (see text).

Figure 2(a) displays the zero-field α(T ) showing a maximum around 6K and a strong
increase above 11 K. The latter is the phononic thermal expansion (αph), while the maximum
is of magnetic origin (αmag). As the Heisenberg chain contains only one energy scale J , a
Grüneisen scaling between the magnetic contribution cmag of the specific heat and αmag is
expected, i.e. αmag(T ) = Γ · cmag(T ) [4, 12]. Using the result of cmag(T ) for the Heisenberg
chain [13], and assuming the usual αph ∝ T 3 of acoustic phonons, we can model the measured
thermal expansion α = Γcmag(T ) + ΠT 3 by adjusting Γ and Π as free parameters. With
Γ = ∂ lnJ/∂pa = 1.7 %/GPa and Π = 1.5 · 10−10/K4, we obtain the solid line in Figure 2(a),
which nicely describes the experimental data up to 20 K and the corresponding αmag is given by
the dashed line. Obviously, the low-temperature expansion α(T < 4 K) of CuPzN is of almost
purely magnetic origin. The fact that this pressure dependence amounts only to about 2/3 of
the value obtained from the magnetostriction data, is most likely due to the uncertainty of the
phononic background, but does not affect the following discussion [10].

Figure 2(b) gives an overview of the thermal expansion data up to 15 T. With increasing
field the maximum of α shifts to lower temperature and above 10 T its amplitude increases on
further approaching the critical field H

‖b
c ' 13.9 T. For a slightly higher field of 14 T, however,

the thermal expansion is completely different; α(T ) is negative in the entire low-T range and
monotonically decreases down to the lowest temperature. For an even higher field of 15 T, α(T )
finally shows a minimum around 1 K.

Figure 3 gives a detailed view on the field region around the QCP. As shown in panel (a), the
α(T ) curves systematically change their curvature from an upward to a downward bending when
the magnetic field is increased from 13.3 T to 14.1 T. From this figure alone, the location of the
QCP is not obvious. Note, however, that only the α(T ) curves for 10 T < H < 13.7 T show a sign
change as a function of T ; see also Figure 2(b). Interestingly, the points where α(T ?,H?) = 0
match the line obtained from the maximum positions of the λ(T,H) curves, see Figure 1(c), and
thus their linear extrapolation to zero temperature also yields H

‖b
c ' 13.9 T. For H > 14.2 T, the

α(T ) curves show minima, whose positions shift to higher T with increasing field; see Figure 3(b).
In Figure 3(c), we compare the three curves closest to the QCP on double-logarithmic scales.
Moreover, a power-law fit of the 13.9 T curve is shown, which yields α(T, 13.9 T) ∝ T−0.51, in
almost perfect agreement with the expected 1/

√
T divergence.

From the above analysis, one may expect the occurrence of sign changes (minima) in α(T,H)
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Figure 3. Thermal expansion along the spin chains for fields close to Hc ≈ 13.9 T. The line in
(c) is a power-law fit yielding α(T, 13.9 T) ∝ T−0.51 (see text).

at temperatures below our minimum T for the curves measured in fields between H
‖b
c and

13.7 T (14.2 T). Because of the AFM ordering, however, this behaviour will be definitely cut
off at TN ' 100 mK, as it has been also observed in (C5H12N)2CuBr4 [8, 14, 15]. In any real
material, the question how well defined the QCP is, will depend on such imperfections and also
on the sample quality. As discussed in Ref. [7], however, due to a magnetic correction of the
elastic moduli the quantum critical behavior may be cut off even in a ’perfect’ sample at low
enough temperature by a first-order phase transition.

In conclusion, we have measured the low-temperature magnetostriction and the thermal
expansion along the spin-1/2 chain direction of Cu(C4H4N2)(NO3)2 up to magnetic fields strong
enough to induce the quantum phase transition from the Luttinger liquid phase to the fully spin-
polarized state. Using a Grüneisen relation, our zero-field expansion data are well described by
the spin-1/2 Heisenberg chain hamiltonian. With increasing field the experimental data follow
the behaviour expected on approaching a quantum critical point. In particular, we observe the
expected sign change and the 1/

√
T divergence of the thermal expansion.
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[7] Anfuso F, Garst M, Rosch A, Heyer O, Lorenz T, Rüegg C and Krämer K 2008 Phys. Rev. B 77 235113
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